TensorRT-LLMs/cpp/tests/unit_tests/runtime/utilsTest.cpp
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

124 lines
4.2 KiB
C++

/*
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TOP_LEVEL_DIR
#error "Define TOP_LEVEL_DIR"
#endif
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/iBuffer.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/utils/numpyUtils.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <cstddef>
#include <filesystem>
#include <numeric>
#include <string>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
namespace fs = std::filesystem;
class UtilsTest : public ::testing::Test // NOLINT(cppcoreguidelines-pro-type-member-init)
{
protected:
void SetUp() override
{
mDeviceCount = tc::getDeviceCount();
if (mDeviceCount == 0)
GTEST_SKIP();
mStream = std::make_unique<CudaStream>();
mManager = std::make_unique<BufferManager>(mStream);
}
void TearDown() override {}
int mDeviceCount;
std::unique_ptr<BufferManager> mManager;
BufferManager::CudaStreamPtr mStream;
};
TEST_F(UtilsTest, LoadNpy)
{
auto const testResourcePath = fs::path{TOP_LEVEL_DIR} / "cpp/tests/resources";
auto const inputFile = testResourcePath / "data/input_tokens.npy";
auto loadedTensor = utils::loadNpy(*mManager, inputFile.string(), MemoryType::kCPU);
ASSERT_EQ(loadedTensor->getSize(), 96);
EXPECT_EQ(loadedTensor->getShape().nbDims, 2);
EXPECT_EQ(loadedTensor->getShape().d[0], 8);
EXPECT_EQ(loadedTensor->getShape().d[1], 12);
}
TEST_F(UtilsTest, LoadStoreNpy)
{
auto dims = ITensor::makeShape({2, 3, 4});
auto constexpr dataType = nvinfer1::DataType::kFLOAT;
ITensor::SharedPtr tensor{BufferManager::cpu(dims, dataType)};
auto tensorRange = BufferRange<float>(*tensor);
std::iota(tensorRange.begin(), tensorRange.end(), 0);
std::string filename{"tensor.npy"};
utils::saveNpy(*mManager, *tensor, filename);
auto loadedTensor = utils::loadNpy(*mManager, filename, MemoryType::kCPU);
ASSERT_EQ(loadedTensor->getSize(), tensor->getSize());
EXPECT_EQ(loadedTensor->getShape().nbDims, tensor->getShape().nbDims);
EXPECT_EQ(loadedTensor->getShape().d[0], tensor->getShape().d[0]);
EXPECT_EQ(loadedTensor->getShape().d[1], tensor->getShape().d[1]);
EXPECT_EQ(loadedTensor->getShape().d[2], tensor->getShape().d[2]);
auto loadedTensorRange = BufferRange<float>(*loadedTensor);
for (size_t i = 0; i < tensor->getSize(); ++i)
{
EXPECT_EQ(loadedTensorRange[i], tensorRange[i]);
}
}
TEST_F(UtilsTest, LoadStoreNpyGPU)
{
auto dims = ITensor::makeShape({2, 3, 4});
auto constexpr dataType = nvinfer1::DataType::kFLOAT;
ITensor::SharedPtr tensor{BufferManager::cpu(dims, dataType)};
auto tensorRange = BufferRange<float>(*tensor);
std::iota(tensorRange.begin(), tensorRange.end(), 0);
auto deviceTensor = mManager->copyFrom(*tensor, MemoryType::kGPU);
std::string filename{"tensor.npy"};
utils::saveNpy(*mManager, *deviceTensor, filename);
auto loadedTensor = utils::loadNpy(*mManager, filename, MemoryType::kGPU);
ASSERT_EQ(loadedTensor->getSize(), tensor->getSize());
EXPECT_EQ(loadedTensor->getShape().nbDims, tensor->getShape().nbDims);
EXPECT_EQ(loadedTensor->getShape().d[0], tensor->getShape().d[0]);
EXPECT_EQ(loadedTensor->getShape().d[1], tensor->getShape().d[1]);
EXPECT_EQ(loadedTensor->getShape().d[2], tensor->getShape().d[2]);
auto hostTensor = mManager->copyFrom(*loadedTensor, MemoryType::kCPU);
auto loadedTensorRange = BufferRange<float>(*hostTensor);
for (size_t i = 0; i < tensor->getSize(); ++i)
{
EXPECT_EQ(loadedTensorRange[i], tensorRange[i]);
}
}