TensorRT-LLMs/tensorrt_llm/_torch/speculative/utils.py
Netanel Haber 9cd8148f28
API Breaking Change + Readability: "decoder"->"sampler" (#4121)
* *decoder*->*sampler*; new_tensors_device: dict[str, torch.Tensor] -> device: SampleStateTensors

* **Breaking Change**, as it changes public interfaces, main changes:
* PyTorchConfig [consumed via LLM(pytorch_backend_config)]: Configuration parameters mixed_decoder and enable_trtllm_decoder -> sampler.
* Command-line argument --enable_trtllm_decoder becomes --enable_trtllm_sampler in examples/pytorch/quickstart_advanced.py.

---------

Signed-off-by: Netanel Haber <58652339+netanel-haber@users.noreply.github.com>
2025-05-16 23:52:25 +08:00

55 lines
2.1 KiB
Python

from .eagle3 import Eagle3Sampler, Eagle3SpecMetadata
from .mtp import MTPHiddenStatesManager, MTPSampler, MTPSpecMetadata
def get_spec_metadata(spec_config,
max_num_requests,
spec_resource_manager=None):
if spec_config.spec_dec_mode.is_mtp():
return MTPSpecMetadata(
max_draft_tokens=spec_config.max_draft_tokens,
spec_dec_mode=spec_config.spec_dec_mode,
mtp_num_modules=spec_config.num_nextn_predict_layers,
max_num_requests=max_num_requests,
mtp_hidden_states_manager=spec_resource_manager)
elif spec_config.spec_dec_mode.is_eagle3():
return Eagle3SpecMetadata(max_draft_tokens=spec_config.max_draft_tokens,
spec_dec_mode=spec_config.spec_dec_mode,
max_num_requests=max_num_requests,
num_layers=spec_config.num_layers,
hidden_size=spec_config.hidden_size)
else:
return None
def get_spec_resource_manager(spec_config, model_config, max_num_requests):
if spec_config.spec_dec_mode.is_mtp_eagle():
if spec_config.use_relaxed_acceptance_for_thinking:
return MTPHiddenStatesManager(spec_config, model_config.torch_dtype,
model_config.hidden_size,
max_num_requests)
else:
return None
elif spec_config.spec_dec_mode.is_mtp():
return MTPHiddenStatesManager(spec_config, model_config.torch_dtype,
model_config.hidden_size,
max_num_requests)
else:
return None
def get_spec_decoder(max_seq_len, spec_config):
if spec_config.spec_dec_mode.is_mtp():
return MTPSampler(max_seq_len, spec_config)
if spec_config.spec_dec_mode.is_eagle3():
return Eagle3Sampler(max_seq_len)
else:
return None
def get_num_spec_layers(spec_config):
if spec_config.spec_dec_mode.is_mtp():
return spec_config.num_nextn_predict_layers
else:
return 0