TensorRT-LLMs/tensorrt_llm/models/gemma/smoothquant.py
2024-08-29 17:25:07 +08:00

1072 lines
46 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import functools
import math
import time
from collections import defaultdict
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from transformers import LlamaConfig, LlamaForCausalLM
from transformers.models.llama.modeling_llama import (LlamaAttention,
LlamaDecoderLayer,
apply_rotary_pos_emb,
repeat_kv)
from transformers.pytorch_utils import Conv1D
from tensorrt_llm._utils import pad_vocab_size, torch_to_numpy
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.gemma.weight import dup_kv_weight
if TYPE_CHECKING:
from transformers import AutoModelForCausalLM, Cache
# transformers included ⬆️ `Cache` in https://github.com/huggingface/transformers/commit/633215ba58fe5114d8c8d32e415a04600e010701 - transformers 4.33, which is installed in the tests, is before this.
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=False):
"""
This function has two purposes:
- compute quantized weights, scaled either per-tensor or per-column
- compute scaling factors
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
Here is the list of what we need (T means per-tensor, C per-column):
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
to quant range (int8) (used for CUBLAS) (T, C)
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
but then the model would change depending on the number of GPUs used.
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
"""
# compute weight scaling factors for fp->int8 and int8->fp
fp32_weight = weights.to(torch.float32).cpu()
if is_qkv and not multi_query_mode:
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
dim=-1, keepdims=True)[0].cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3,
-1).cpu().numpy()
elif is_qkv and multi_query_mode:
hidden_dim = fp32_weight.shape[0]
local_dim = act_range["w"].shape[0]
kv_dim = (local_dim - hidden_dim) // 2
scale_w_q = act_range["w"][0:hidden_dim]
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
scale_w_v = act_range["w"][-kv_dim:]
scale_w_qkv_t = torch.concat([
scale_w_q.max(dim=0, keepdim=True)[0],
scale_w_k.max(dim=0, keepdim=True)[0],
scale_w_v.max(dim=0, keepdim=True)[0]
])
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
else:
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
scale_w_orig_quant_c = scale_w_orig_quant_c.astype(np.float32)
scale_w_orig_quant_t = scale_w_orig_quant_t.astype(np.float32)
# compute the rest of needed scaling factors
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item())
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item())
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.)
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_t)
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_c)
if is_qkv and not multi_query_mode:
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
scale_w_orig_quant_c.shape)
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
scale_w_orig_quant_c.shape)
if is_qkv and multi_query_mode:
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
scale_w_q.shape)
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
scale_w_k.shape)
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
scale_w_v.shape)
scale_y_accum_quant_t = np.concatenate(
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
scale_w_quant_orig_t = np.concatenate([
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
])
to_i8 = lambda x: torch_to_numpy(x.round().clip(-127, 127).to(torch.int8))
if is_qkv and multi_query_mode:
weight_int8 = to_i8(fp32_weight / scale_w_quant_orig_t)
else:
weight_int8 = to_i8(fp32_weight * scale_w_orig_quant_t)
return {
"weight.int8": weight_int8,
"weight.int8.col": to_i8(fp32_weight * scale_w_orig_quant_c),
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
}
@torch.no_grad()
def apply_smoothing(scales,
gemm_weights,
layernorm_weights=None,
layernorm_bias=None,
dtype=torch.float32,
layernorm_1p=False):
if not isinstance(gemm_weights, list):
gemm_weights = [gemm_weights]
if layernorm_weights is not None:
assert layernorm_weights.numel() == scales.numel()
layernorm_weights.div_(scales).to(dtype)
if layernorm_bias is not None:
assert layernorm_bias.numel() == scales.numel()
layernorm_bias.div_(scales).to(dtype)
if layernorm_1p:
layernorm_weights += (1 / scales) - 1
for gemm in gemm_weights:
gemm.mul_(scales.view(1, -1)).to(dtype)
@torch.no_grad()
def smooth_gemm(gemm_weights,
act_scales,
layernorm_weights=None,
layernorm_bias=None,
alpha: Optional[float] = 0.5,
weight_scales=None):
if not isinstance(gemm_weights, list):
gemm_weights = [gemm_weights]
orig_dtype = gemm_weights[0].dtype
for gemm in gemm_weights:
# gemm_weights are expected to be transposed
assert gemm.shape[1] == act_scales.numel()
if weight_scales is None:
weight_scales = torch.cat(
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
dim=0)
weight_scales = weight_scales.max(dim=0)[0]
weight_scales.to(float).clamp(min=1e-5)
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
apply_smoothing(scales, gemm_weights, layernorm_weights, layernorm_bias,
orig_dtype)
return scales
@torch.no_grad()
def capture_activation_range(model,
tokenizer,
dataset,
num_samples=1,
seq_len=512):
model.cuda().eval()
device = next(model.parameters()).device
act_scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
# tokenizer.pad_token = tokenizer.eos_token
def stat_tensor(name, tensor, act_scales, key):
hidden_dim = tensor.shape[-1]
tensor = tensor.view(-1, hidden_dim).abs().detach()
comming_max = torch.max(tensor, dim=0)[0].float()
if act_scales[name][key] is None:
act_scales[name][key] = comming_max
else:
act_scales[name][key] = torch.max(act_scales[name][key],
comming_max)
def stat_input_hook(m, x, y, name):
if isinstance(x, tuple):
x = x[0]
stat_tensor(name, x, act_scales, "x")
stat_tensor(name, y, act_scales, "y")
if act_scales[name]["w"] is None:
act_scales[name]["w"] = m.weight.abs().clip(
1e-8, None).max(dim=1)[0].float()
hooks = []
for name, m in model.named_modules():
if isinstance(m, nn.Linear) or isinstance(m, Conv1D):
hooks.append(
m.register_forward_hook(
functools.partial(stat_input_hook, name=name)))
for i in tqdm(range(num_samples), desc="calibrating model"):
datapoint = dataset[i:i + 1]
line = copy.copy(datapoint)
line[0] = line[0] + ' TL;DR: '
line[0] = line[0].strip()
line[0] = line[0].replace(" n't", "n't")
# input_ids = tokenizer(line,
# return_tensors="pt",
# max_length=seq_len,
# padding=True,
# truncation=True).input_ids.to(device)
inputs = tokenizer.EncodeAsIds(line[0])
inputs = np.array([[tokenizer.bos_id()] + inputs], dtype=np.int32)
input_ids = torch.tensor(inputs, dtype=torch.int32).to(device)
model(input_ids)
for h in hooks:
h.remove()
return act_scales
@torch.no_grad()
def smooth_gemm_fc1_gate(fc1_weights,
gate_weights,
act_scales,
layernorm_weights=None,
layernorm_bias=None,
alpha: Optional[float] = 0.5,
weight_scales=None):
gemm_weights = []
if not isinstance(fc1_weights, list):
fc1_weights = [fc1_weights]
if not isinstance(gate_weights, list):
gate_weights = [gate_weights]
for i in range(len(fc1_weights)):
gemm_weight = torch.cat([fc1_weights[i], gate_weights[i]], dim=0)
gemm_weights.append(gemm_weight)
orig_dtype = gemm_weights[0].dtype
for gemm in gemm_weights:
# gemm_weights are expected to be transposed
assert gemm.shape[1] == act_scales.numel()
if weight_scales is None:
weight_scales = torch.cat(
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
dim=0)
weight_scales = weight_scales.max(dim=0)[0]
weight_scales.to(float).clamp(min=1e-5)
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
apply_smoothing(scales, fc1_weights + gate_weights, layernorm_weights,
layernorm_bias, orig_dtype)
return scales
@torch.no_grad()
def smooth_model(model, scales, alpha: Optional[float], qkv_para,
smoother_dict):
# Smooth the activation and weights with smoother = $\diag{s}$
for name, module in model.named_modules():
if not isinstance(module, LlamaDecoderLayer):
continue
# qkv_proj
layer_name_q = name + ".self_attn.q_proj"
layer_name_k = name + ".self_attn.k_proj"
layer_name_v = name + ".self_attn.v_proj"
layer_name_qkv = name + ".self_attn.qkv_proj"
weight = torch.cat([
module.self_attn.q_proj.weight, module.self_attn.k_proj.weight,
module.self_attn.v_proj.weight
],
dim=0)
smoother = smooth_gemm(weight, scales[layer_name_q]["x"],
module.input_layernorm.weight, None, alpha)
scales[layer_name_qkv]["x"] = scales[layer_name_q]["x"] / smoother
scales[layer_name_qkv]["w"] = weight.abs().max(dim=1)[0]
scales[layer_name_qkv]["y"] = torch.cat([
scales[layer_name_q]["y"], scales[layer_name_k]["y"],
scales[layer_name_v]["y"]
],
dim=0)
# see transpose_weights function
qkv_para[layer_name_qkv] = weight.transpose(0, 1)
# =================================================================
layer_name = name + ".self_attn.o_proj"
smoother = smooth_gemm(module.self_attn.o_proj.weight,
scales[layer_name]["x"], None, None, alpha)
smoother_dict[layer_name] = smoother.float()
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.self_attn.o_proj.weight.abs().max(
dim=1)[0]
# ==================================================================
fc1_layer_name = name + ".mlp.gate_proj"
gate_layer_name = name + ".mlp.up_proj"
smoother = smooth_gemm_fc1_gate(module.mlp.gate_proj.weight,
module.mlp.up_proj.weight,
scales[fc1_layer_name]["x"],
module.post_attention_layernorm.weight,
None, alpha)
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
scales[fc1_layer_name]["w"] = module.mlp.gate_proj.weight.abs().max(
dim=1)[0]
scales[gate_layer_name]["x"] = scales[gate_layer_name]["x"] / smoother
scales[gate_layer_name]["w"] = module.mlp.up_proj.weight.abs().max(
dim=1)[0]
# ==================================================================
layer_name = name + ".mlp.down_proj"
smoother = smooth_gemm(module.mlp.down_proj.weight,
scales[layer_name]["x"], None, None, alpha)
smoother_dict[layer_name] = smoother.float()
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.mlp.down_proj.weight.abs().max(
dim=1)[0]
def get_tllm_linear_sq_weight(vals,
prefix,
shape,
tensor_parallel,
is_qkv=False,
per_token=False,
per_channel=False,
last_prefix=None,
bias=None,
smoother_value=None,
smoother_shape=None,
rank=0,
cat_dim=0,
multi_query_mode=False):
results = {}
def multi_query_split(data, local_dim, head_size, tp_size, cur_rank):
q, k, v = np.split(data, [local_dim, local_dim + head_size], axis=-1)
q_split = np.split(q, tp_size, axis=-1)
k_split = np.split(k, tp_size, axis=-1)
v_split = np.split(v, tp_size, axis=-1)
return [
np.concatenate((q_split[ii], k_split[ii], v_split[ii]), axis=-1)
for ii in range(tp_size)
][cur_rank]
col_shape = shape if (is_qkv or per_channel) else [1, 1]
if per_token:
if per_channel:
original_weights = np.array(vals["weight.int8.col"])
else:
original_weights = np.array(vals["weight.int8"])
local_dim = original_weights.shape[0]
head_size = (original_weights.shape[1] - local_dim) // 2
if multi_query_mode:
cur_weights = multi_query_split(original_weights, local_dim,
head_size, tensor_parallel, rank)
else:
cur_weights = np.split(original_weights,
tensor_parallel,
axis=cat_dim)[rank]
if is_qkv:
hidden_dim = cur_weights.shape[0]
cur_weights = cur_weights.reshape(hidden_dim, -1)
results[prefix +
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
if smoother_value is None:
results[last_prefix] = torch.from_numpy(
np.array([1.0], dtype=np.float32))
if per_channel:
cur_per_channel_value = vals["scale_w_quant_orig.col"]
if smoother_value is None:
if multi_query_mode:
cur_per_channel_value = multi_query_split(
vals["scale_w_quant_orig.col"], local_dim, head_size,
tensor_parallel, rank)
else:
cur_per_channel_value = np.split(
vals["scale_w_quant_orig.col"],
tensor_parallel,
axis=cat_dim)[rank]
else:
cur_per_channel_value = vals["scale_w_quant_orig"]
if is_qkv:
if multi_query_mode:
cur_per_channel_value = multi_query_split(
vals["scale_w_quant_orig"], local_dim, head_size,
tensor_parallel, rank)
else:
cur_per_channel_value = np.split(vals["scale_w_quant_orig"],
tensor_parallel,
axis=cat_dim)[rank]
results[prefix + 'per_channel_scale'] = torch.from_numpy(
np.array(cur_per_channel_value,
dtype=np.float32).reshape(col_shape)).contiguous()
else:
if per_channel:
original_weights = np.array(vals["weight.int8.col"])
else:
original_weights = np.array(vals["weight.int8"])
local_dim = original_weights.shape[0]
head_size = (original_weights.shape[1] - local_dim) // 2
if multi_query_mode:
cur_weights = multi_query_split(original_weights, local_dim,
head_size, tensor_parallel, rank)
else:
cur_weights = np.split(original_weights,
tensor_parallel,
axis=cat_dim)[rank]
if is_qkv:
hidden_dim = cur_weights.shape[0]
cur_weights = cur_weights.reshape(hidden_dim, -1)
results[prefix +
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
if per_channel:
cur_per_channel_value = vals["scale_y_accum_quant.col"]
if smoother_value is None:
if multi_query_mode:
cur_per_channel_value = multi_query_split(
vals["scale_y_accum_quant.col"], local_dim, head_size,
tensor_parallel, rank)
else:
cur_per_channel_value = np.split(
vals["scale_y_accum_quant.col"],
tensor_parallel,
axis=cat_dim)[rank]
else:
cur_per_channel_value = vals["scale_y_accum_quant"]
# QKV is always per_channel
if is_qkv:
if multi_query_mode:
cur_per_channel_value = multi_query_split(
vals["scale_y_accum_quant"], local_dim, head_size,
tensor_parallel, rank)
else:
cur_per_channel_value = np.split(
vals["scale_y_accum_quant"],
tensor_parallel,
axis=cat_dim)[rank]
results[prefix + 'per_channel_scale'] = torch.from_numpy(
np.array([cur_per_channel_value],
dtype=np.float32).reshape(col_shape)).contiguous()
results[last_prefix] = torch.from_numpy(
np.array([vals['scale_x_orig_quant']],
dtype=np.float32)).contiguous()
results[prefix + 'act_scale'] = torch.from_numpy(
np.array([[vals["scale_y_quant_orig"]]],
dtype=np.float32)).contiguous()
if smoother_value is not None:
cur_smoother_value = np.split(smoother_value,
tensor_parallel,
axis=cat_dim)[rank]
results[prefix + 'smoother'] = cur_smoother_value.reshape(
smoother_shape).contiguous().to(torch.float32)
if bias is not None:
results[prefix + 'bias'] = bias
return results
def split(weight: torch.Tensor,
tp_size: int,
rank: int = 0,
dim: int = 0) -> torch.Tensor:
if tp_size == 1:
return weight
elif weight.ndim == 1:
return torch.chunk(weight, tp_size)[rank].contiguous()
else:
return torch.chunk(weight, tp_size, dim=dim)[rank].contiguous()
def split_qkv_tp(qkv, n_head, n_kv_heads, head_size, tensor_parallel, rank):
"""
Splits the QKV matrix according to tensor parallelism
"""
kv_head_size = n_kv_heads * head_size
q, k, v = torch.split(qkv, [n_head * head_size, kv_head_size, kv_head_size],
dim=0)
q = split(q, tensor_parallel, rank, dim=0)
k = split(k, tensor_parallel, rank, dim=0)
v = split(v, tensor_parallel, rank, dim=0)
return torch.concatenate([q, k, v], dim=0).contiguous()
def split_matrix_tp(weight: torch.Tensor, tp_size: int, rank: int,
dim: int) -> torch.Tensor:
return split(weight, tp_size, rank, dim=dim)
def get_weight(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.weight' not in params:
return None
return params[f'{prefix}.weight'].to(dtype).detach().cpu()
def get_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.bias' not in params:
return None
return params[f'{prefix}.bias'].to(dtype).detach().cpu()
def get_weight_and_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> Tuple[torch.Tensor]:
return get_weight(params, prefix, dtype), get_bias(params, prefix, dtype)
def get_tllm_linear_weight(
weight: torch.Tensor,
prefix: str,
bias: Optional[torch.Tensor] = None,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8
) -> Dict[str, torch.Tensor]:
results = {}
if use_weight_only:
v = weight.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[f'{prefix}weight'] = processed_torch_weights
results[f'{prefix}per_channel_scale'] = torch_weight_scales
else:
results[f'{prefix}weight'] = weight.contiguous()
if bias is not None:
results[f'{prefix}bias'] = bias
return results
class LlamaAttentionExtend(LlamaAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.head_dim = self.config.head_size
self.q_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=False)
self.k_proj = nn.Linear(self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=False)
self.v_proj = nn.Linear(self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim,
self.hidden_size,
bias=False)
self._init_rope()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: "Optional[Cache]" = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads *
self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp,
dim=0)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [
F.linear(hidden_states, query_slices[i])
for i in range(self.config.pretraining_tp)
]
query_states = torch.cat(query_states, dim=-1)
key_states = [
F.linear(hidden_states, key_slices[i])
for i in range(self.config.pretraining_tp)
]
key_states = torch.cat(key_states, dim=-1)
value_states = [
F.linear(hidden_states, value_slices[i])
for i in range(self.config.pretraining_tp)
]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads,
self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
past_key_value = getattr(self, "past_key_value", past_key_value)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states,
key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
cache_kwargs = {
"sin": sin,
"cos": cos,
"cache_position": cache_position
}
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(
2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
if cache_position is not None:
causal_mask = attention_mask[:, :, cache_position, :key_states.
shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1,
dtype=torch.float32).to(
query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights,
p=self.attention_dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
# Here is what we extend.
attn_output = attn_output.reshape(bsz, q_len,
self.num_heads * self.head_dim)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size //
self.config.pretraining_tp,
dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size //
self.config.pretraining_tp,
dim=1)
attn_output = sum([
F.linear(attn_output[i], o_proj_slices[i])
for i in range(self.config.pretraining_tp)
])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def create_model_from_config(trt_llm_config, weights):
model_config = LlamaConfig()
model_config.vocab_size = trt_llm_config.vocab_size
model_config.dtype = trt_llm_config.dtype
model_config.max_position_embeddings = trt_llm_config.max_position_embeddings
model_config.hidden_size = trt_llm_config.hidden_size
model_config.num_hidden_layers = trt_llm_config.num_hidden_layers
model_config.num_attention_heads = trt_llm_config.num_attention_heads
model_config.num_key_value_heads = trt_llm_config.num_key_value_heads
model_config.hidden_act = trt_llm_config.hidden_act
model_config.head_size = trt_llm_config.head_size
model_config.intermediate_size = trt_llm_config.intermediate_size
model = LlamaForCausalLM(model_config)
# Hack attention module since head_dim * num_heads > hidden_size for 7B.
for i in range(model_config.num_hidden_layers):
module = model.model.layers[i].self_attn
model.model.layers[i].self_attn = LlamaAttentionExtend(
module.config, module.layer_idx)
# Copy wegiht to LLAMA model.
replace_name_dict = {
'attention.dense': 'self_attn.o_proj',
'mlp.proj': 'mlp.down_proj',
'mlp.gate': 'mlp.up_proj',
'mlp.fc': 'mlp.gate_proj',
'ln_f': 'norm',
'post_layernorm': 'post_attention_layernorm',
'vocab_embedding': 'embed_tokens',
}
for name in list(weights):
param = weights[name]
weights.pop(name)
new_name = name.replace('transformer', 'model')
for _name in replace_name_dict:
if _name in new_name:
new_name = new_name.replace(_name, replace_name_dict[_name])
if 'attention.qkv' in name:
qw, kw, vw = torch.split(param, [
model_config.num_attention_heads * model_config.head_size,
model_config.num_key_value_heads * model_config.head_size,
model_config.num_key_value_heads * model_config.head_size,
],
dim=0)
weights[new_name.replace('attention.qkv', 'self_attn.q_proj')] = qw
weights[new_name.replace('attention.qkv', 'self_attn.k_proj')] = kw
weights[new_name.replace('attention.qkv', 'self_attn.v_proj')] = vw
else:
weights[new_name] = param
if "lm_head.weight" not in weights:
weights["lm_head.weight"] = weights["model.embed_tokens.weight"].clone()
model.load_state_dict(weights)
return model
def convert_hf_model(*, hf_model: "AutoModelForCausalLM", mapping: Mapping,
vocab_size: int, dtype: str, use_parallel_embedding: bool,
sharding_dim: int, use_weight_only: bool,
plugin_weight_only_quant_type: torch.dtype,
use_smooth_quant: bool, per_channel: bool, per_token: bool,
int8_kv_cache: bool,
act_range: "defaultdict[Any, dict[str, None]]",
qkv_para: Dict, smoother: Dict):
weights = {}
tik = time.time()
tensor_parallel = mapping.tp_size
model_params = dict(hf_model.named_parameters())
dtype = getattr(torch, dtype)
num_attention_heads = hf_model.config.num_attention_heads
hidden_size = hf_model.config.hidden_size
intermediate_size = hf_model.config.intermediate_size
head_size = hf_model.config.head_size
num_key_value_heads = hf_model.config.num_key_value_heads
mha_mode = (num_key_value_heads == num_attention_heads)
num_hidden_layers = hf_model.config.num_hidden_layers
layers_range = mapping.pp_layers(num_hidden_layers)
for l in layers_range:
print("Processing layer", l)
prefix = f'model.layers.{l}.'
layer_idx = int(l) - layers_range[0]
tllm_prex = f'transformer.layers.{layer_idx}.'
if use_smooth_quant:
qkv_weight = qkv_para[prefix + 'self_attn.qkv_proj']
qkv_out_dim = qkv_weight.shape[1]
if not mha_mode:
hidden_size = qkv_weight.shape[0]
local_dim = hidden_size
head_size = (qkv_weight.shape[-1] - local_dim) // 2
qkv_weight = qkv_weight.reshape(hidden_size,
local_dim + 2 * head_size)
else:
qkv_weight = qkv_weight.reshape(hidden_size, 3,
head_size * num_attention_heads)
int8_weights = generate_int8(qkv_weight,
act_range.get(prefix +
'self_attn.qkv_proj'),
is_qkv=True,
multi_query_mode=bool(not mha_mode))
weights.update(
get_tllm_linear_sq_weight(int8_weights,
tllm_prex + 'attention.qkv.',
[1, qkv_out_dim // tensor_parallel],
tensor_parallel,
is_qkv=True,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex +
'input_layernorm.scale_to_int',
smoother_value=None,
smoother_shape=None,
rank=mapping.tp_rank,
cat_dim=-1,
multi_query_mode=bool(not mha_mode)))
else:
q_weight = get_weight(model_params, prefix + 'self_attn.q_proj',
dtype)
k_weight = get_weight(model_params, prefix + 'self_attn.k_proj',
dtype)
v_weight = get_weight(model_params, prefix + 'self_attn.v_proj',
dtype)
if not mha_mode:
if num_key_value_heads < tensor_parallel:
# duplicate the KV heads up to tensor_parallel
k_weight = dup_kv_weight(k_weight, num_key_value_heads,
tensor_parallel)
v_weight = dup_kv_weight(v_weight, num_key_value_heads,
tensor_parallel)
assert (k_weight.shape[0] % (mapping.tp_size * head_size)) == 0
assert (v_weight.shape[0] % (mapping.tp_size * head_size)) == 0
wq = split(q_weight, mapping.tp_size, mapping.tp_rank)
wk = split(k_weight, mapping.tp_size, mapping.tp_rank)
wv = split(v_weight, mapping.tp_size, mapping.tp_rank)
split_v = torch.concat((wq, wk, wv))
else:
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
split_v = split_qkv_tp(qkv_weight, num_attention_heads,
num_key_value_heads, head_size,
tensor_parallel, mapping.tp_rank)
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'attention.qkv.',
None, use_weight_only,
plugin_weight_only_quant_type))
if int8_kv_cache:
qkv_y = torch.cat([
act_range.get(prefix + 'self_attn.q_proj')["y"],
act_range.get(prefix + 'self_attn.k_proj')["y"],
act_range.get(prefix + 'self_attn.v_proj')["y"]
],
dim=0)
int8_kv_scales = qkv_y.max() / 127.
kv_cache_weights = {}
kv_cache_weights[
tllm_prex +
'attention.kv_cache_scaling_factor'] = int8_kv_scales.reshape(
[1])
weights.update(kv_cache_weights)
# Attention dense.
attn_dense_weight = get_weight(model_params,
prefix + 'self_attn.o_proj', dtype)
if use_smooth_quant:
attn_dense_weight = attn_dense_weight.t()
int8_weights = generate_int8(
attn_dense_weight, act_range.get(prefix + 'self_attn.o_proj'))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'attention.dense.', [1, hidden_size],
tensor_parallel,
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex +
'attention.quantization_scaling_factor',
smoother_value=smoother[(prefix + 'self_attn.o_proj')],
smoother_shape=[
1, head_size * num_attention_heads // tensor_parallel
],
rank=mapping.tp_rank,
cat_dim=0))
else:
attn_dense_weight = split_matrix_tp(attn_dense_weight,
tensor_parallel,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_linear_weight(attn_dense_weight,
tllm_prex + 'attention.dense.', None,
use_weight_only,
plugin_weight_only_quant_type))
# MLP hf up to trt gate
mlp_up_weight = get_weight(model_params, prefix + 'mlp.up_proj', dtype)
if use_smooth_quant:
mlp_up_weight = mlp_up_weight.t()
int8_weights = generate_int8(mlp_up_weight,
act_range.get(prefix + 'mlp.up_proj'))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'mlp.gate.',
[1, intermediate_size // tensor_parallel],
tensor_parallel,
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
smoother_value=None,
smoother_shape=None,
rank=mapping.tp_rank,
cat_dim=-1))
else:
mlp_up_weight = split_matrix_tp(mlp_up_weight,
tensor_parallel,
mapping.tp_rank,
dim=0)
weights.update(
get_tllm_linear_weight(mlp_up_weight, tllm_prex + 'mlp.gate.',
None, use_weight_only,
plugin_weight_only_quant_type))
# MLP trt Gate to mlp fc
mlp_gate_weight = get_weight(model_params, prefix + 'mlp.gate_proj',
dtype)
if use_smooth_quant:
mlp_gate_weight = mlp_gate_weight.t()
int8_weights = generate_int8(
mlp_gate_weight, act_range.get(prefix + 'mlp.gate_proj'))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'mlp.fc.',
[1, intermediate_size // tensor_parallel],
tensor_parallel,
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
smoother_value=None,
smoother_shape=None,
rank=mapping.tp_rank,
cat_dim=-1))
else:
mlp_gate_weight = split_matrix_tp(mlp_gate_weight,
tensor_parallel,
mapping.tp_rank,
dim=0)
weights.update(
get_tllm_linear_weight(mlp_gate_weight, tllm_prex + 'mlp.fc.',
None, use_weight_only,
plugin_weight_only_quant_type))
# MLP down
mlp_proj_weight = get_weight(model_params, prefix + 'mlp.down_proj',
dtype)
if use_smooth_quant:
mlp_proj_weight = mlp_proj_weight.t()
int8_weights = generate_int8(
mlp_proj_weight, act_range.get(prefix + 'mlp.down_proj'))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'mlp.proj.', [1, hidden_size],
tensor_parallel,
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex + 'mlp.quantization_scaling_factor',
smoother_value=smoother[prefix + 'mlp.down_proj'],
smoother_shape=[1, intermediate_size // tensor_parallel],
rank=mapping.tp_rank,
cat_dim=0))
else:
mlp_proj_weight = split_matrix_tp(mlp_proj_weight,
tensor_parallel,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_linear_weight(mlp_proj_weight, tllm_prex + 'mlp.proj.',
None, use_weight_only,
plugin_weight_only_quant_type))
# Layer norms do not use tensor parallelism
input_ln_weight = get_weight(model_params, prefix + 'input_layernorm',
dtype)
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
post_ln_weight = get_weight(model_params,
prefix + 'post_attention_layernorm', dtype)
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
v = get_weight(model_params, 'model.embed_tokens', dtype)
if use_parallel_embedding:
v = split_matrix_tp(v,
mapping.tp_size,
mapping.tp_rank,
dim=sharding_dim)
if mapping.is_first_pp_rank():
weights['transformer.vocab_embedding.weight'] = v
lm_head_weights = get_weight(model_params, 'lm_head', dtype)
if mapping.is_last_pp_rank():
if vocab_size % mapping.tp_size != 0:
# padding
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
pad_width = vocab_size_padded - vocab_size
lm_head_weights = torch.from_numpy(
np.pad(lm_head_weights.detach().cpu().numpy(),
((0, pad_width), (0, 0)),
'constant',
constant_values=0))
weights['lm_head.weight'] = split_matrix_tp(lm_head_weights,
tensor_parallel,
mapping.tp_rank,
dim=0)
ln_f_w = get_weight(model_params, 'model.norm', dtype)
weights['transformer.ln_f.weight'] = ln_f_w
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Weights loaded. Total time: {t}')
return weights