TensorRT-LLMs/benchmarks/python/gpt_benchmark.py
Kaiyu Xie f044eb8d94
Update TensorRT-LLM (#302)
* Update TensorRT-LLM

---------

Co-authored-by: wangruohui <12756472+wangruohui@users.noreply.github.com>
2023-11-07 19:51:58 +08:00

601 lines
26 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
from math import ceil
import torch
from allowed_configs import get_build_config, get_model_family
from base_benchmark import BaseBenchmark, get_engine_name, serialize_engine
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.layers import PositionEmbeddingType
from tensorrt_llm.models import quantize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
class GPTBenchmark(BaseBenchmark):
def __init__(self,
engine_dir,
model_name,
mode,
batch_sizes,
in_out_lens,
dtype,
refit,
num_beams,
top_k,
top_p,
output_dir,
n_positions=None,
max_input_len=None,
max_output_len=None,
max_batch_size=None,
enable_custom_all_reduce=None,
**kwargs):
super().__init__(engine_dir, model_name, dtype, output_dir)
self.batch_sizes = batch_sizes
self.in_out_lens = in_out_lens
self.refit = refit
self.num_beams = num_beams
self.build_time = 0
self.mode = mode # plugin or ootb or ootb-except-mha
self.fuse_bias = True
self.cuda_graph_mode = kwargs.get('enable_cuda_graph', False)
self.strongly_typed = kwargs.get('strongly_typed', False)
self.enable_custom_all_reduce = enable_custom_all_reduce
if engine_dir is not None:
# Get build configs from engine directory is done in base class
# Deserialize engine from engine directory
self.serialize_path = os.path.join(engine_dir, self.engine_name)
with open(self.serialize_path, 'rb') as f:
engine_buffer = f.read()
else:
# Build engine
self.world_size = tensorrt_llm.mpi_world_size()
self.apply_query_key_layer_scaling = False
self.use_weight_only = False
self.per_group = False
self.weight_only_precision = 'int8'
self.per_token = False
self.per_channel = False
use_mha_plugin = mode == 'plugin' or mode == 'ootb-except-mha'
mha_plg_dtype = dtype if use_mha_plugin else False
use_non_mha_plugin = mode == 'plugin'
non_mha_plg_dtype = dtype if use_non_mha_plugin else False
self.use_gpt_attention_plugin = mha_plg_dtype
self.use_gemm_plugin = non_mha_plg_dtype
# Starting TRT9.1 OOTB norm layer sees improvement over plugin norm layer
self.use_layernorm_plugin = False
self.use_rmsnorm_plugin = False
self.use_lookup_plugin = non_mha_plg_dtype
self.enable_context_fmha = use_mha_plugin
self.remove_input_padding = use_non_mha_plugin
for key, value in get_build_config(model_name).items():
setattr(self, key, value)
if self.quantization is None:
self.quantization = kwargs.get('quantization', None)
self.set_quantization()
# Override the n_position/max_input_len/max_output_len/max_batch_size to value from cmd line if that's specified.
if n_positions is not None:
assert isinstance(
n_positions, int
) and n_positions > 0, f"n_positions should be a valid int number, got {n_positions}"
self.n_positions = n_positions
if max_input_len is not None:
assert isinstance(
max_input_len, int
) and max_input_len > 0, f"max_input_len should be a valid int number, got {max_input_len}"
self.max_input_len = max_input_len
if max_output_len is not None:
assert isinstance(
max_output_len, int
) and max_output_len > 0, f"max_output_len should be a valid int number, got {max_output_len}"
self.max_output_len = max_output_len
if max_batch_size is not None:
assert isinstance(
max_batch_size, int
) and max_batch_size > 0, f"max_batch_size should be a valid int number, got {max_batch_size}"
self.max_batch_size = max_batch_size
if self.num_kv_heads is None:
self.num_kv_heads = self.num_heads
if kwargs.get('force_num_layer_1', False):
self.num_layers = 1
engine_buffer = self.build()
assert engine_buffer is not None
model_config = tensorrt_llm.runtime.ModelConfig(
num_heads=self.num_heads // self.world_size,
num_kv_heads=ceil(self.num_kv_heads / self.world_size),
hidden_size=self.hidden_size // self.world_size,
vocab_size=self.vocab_size,
num_layers=self.num_layers,
gpt_attention_plugin=self.use_gpt_attention_plugin,
remove_input_padding=self.remove_input_padding,
quant_mode=self.quant_mode,
use_custom_all_reduce=self.enable_custom_all_reduce,
)
if model_name == 'chatglm-6b':
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=130005,
pad_id=3,
num_beams=num_beams,
top_k=top_k,
top_p=top_p)
self.decoder = tensorrt_llm.runtime.ChatGLMGenerationSession(
model_config, engine_buffer, self.runtime_mapping)
elif model_name == 'chatglm2-6b':
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=2,
pad_id=0,
num_beams=num_beams,
top_k=top_k,
top_p=top_p)
self.decoder = tensorrt_llm.runtime.GenerationSession(
model_config, engine_buffer, self.runtime_mapping)
elif model_name == 'chatglm3-6b':
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=2,
pad_id=0,
num_beams=num_beams,
top_k=top_k,
top_p=top_p)
self.decoder = tensorrt_llm.runtime.GenerationSession(
model_config, engine_buffer, self.runtime_mapping)
else:
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=50256,
pad_id=50256,
num_beams=num_beams,
top_k=top_k,
top_p=top_p)
self.decoder = tensorrt_llm.runtime.GenerationSession(
model_config,
engine_buffer,
self.runtime_mapping,
cuda_graph_mode=self.cuda_graph_mode)
def get_config(self):
for inlen, outlen in self.in_out_lens:
if inlen > self.max_input_len or outlen > self.max_output_len:
print(
f'[WARNING] check inlen({inlen}) <= max_inlen({self.max_input_len}) and '
f'outlen({outlen}) <= max_outlen({self.max_output_len}) failed, skipping.'
)
continue
for batch_size in self.batch_sizes:
if batch_size > self.max_batch_size:
print(
f'[WARNING] check batch_size({batch_size}) '
f'<= max_batch_size({self.max_batch_size}) failed, skipping.'
)
continue
yield (batch_size, inlen, outlen)
def prepare_inputs(self, config):
batch_size, inlen, outlen = config[0], config[1], config[2]
input_ids = torch.randint(100, (batch_size, inlen)).int().cuda()
input_lengths = torch.tensor([inlen
for _ in range(batch_size)]).int().cuda()
self.decoder.setup(batch_size, inlen, outlen, beam_width=self.num_beams)
return (input_ids, input_lengths)
def set_quantization(self):
self.quant_mode = QuantMode(0)
if self.quantization == "fp8":
self.strongly_typed = True
self.quant_mode = self.quant_mode.set_fp8_qdq()
self.quant_mode = self.quant_mode.set_fp8_kv_cache()
elif self.quantization == "fp8_gemm":
self.strongly_typed = True
self.quant_mode = self.quant_mode.set_fp8_qdq()
elif self.quantization == "fp8_kv_cache":
self.strongly_typed = True
self.quant_mode = self.quant_mode.set_fp8_kv_cache()
elif self.quantization == "int8_sq_per_tensor":
self.use_smooth_quant = True
self.quant_mode = QuantMode.use_smooth_quant(
self.per_token, self.per_channel)
elif self.quantization == "int8_sq_per_token_channel":
self.use_smooth_quant = True
self.per_token = True
self.per_channel = True
self.quant_mode = QuantMode.use_smooth_quant(
self.per_token, self.per_channel)
elif self.quantization == "int8_weight_only":
self.use_smooth_quant = False
self.use_weight_only = True
self.weight_only_precision = 'int8'
self.quant_mode = QuantMode.use_weight_only(False)
elif self.quantization == "int4_weight_only":
self.use_weight_only = True
self.weight_only_precision = 'int4'
self.quant_mode = QuantMode.use_weight_only(True)
elif self.quantization == "int4_weight_only_awq":
self.use_weight_only = True
self.per_group = True
self.weight_only_precision = 'int4_awq'
self.quant_mode = QuantMode.from_description(
quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=True,
use_int4_weights=True)
elif self.quantization == "int4_weight_only_gptq":
self.use_weight_only = True
self.per_group = True
self.weight_only_precision = 'int4_gptq'
self.quant_mode = QuantMode.from_description(
quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=True,
use_int4_weights=True)
elif self.quantization == None:
pass
else:
raise Exception(f'{0} is invalid config: {self.quantization}')
def build(self):
builder = Builder()
builder_config = builder.create_builder_config(
name=self.model_name,
precision=self.dtype,
timing_cache=None,
tensor_parallel=self.world_size, # TP only
parallel_build=True,
num_layers=self.num_layers,
num_heads=self.num_heads,
num_kv_heads=self.num_kv_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.n_positions,
apply_query_key_layer_scaling=self.apply_query_key_layer_scaling,
max_batch_size=self.max_batch_size,
max_input_len=self.max_input_len,
max_output_len=self.max_output_len,
int8=self.quant_mode.has_act_and_weight_quant(),
quant_mode=self.quant_mode,
use_refit=self.refit,
opt_level=self.builder_opt,
strongly_typed=self.strongly_typed)
engine_name = get_engine_name(self.model_name, self.dtype,
self.world_size, self.runtime_rank)
kv_dtype = str_dtype_to_trt(self.dtype)
# Initialize Module
family = get_model_family(self.model_name)
if family == "gpt":
tensorrt_llm_model = tensorrt_llm.models.GPTLMHeadModel(
num_layers=self.num_layers,
num_heads=self.num_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.n_positions,
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(
world_size=self.world_size,
tp_size=self.world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling,
position_embedding_type=PositionEmbeddingType.learned_absolute
if self.position_embedding_type is None else
self.position_embedding_type,
rotary_embedding_percentage=self.rotary_pct,
quant_mode=self.quant_mode,
bias=self.bias)
elif family == "opt":
tensorrt_llm_model = tensorrt_llm.models.OPTLMHeadModel(
num_layers=self.num_layers,
num_heads=self.num_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.n_positions,
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(
world_size=self.world_size,
tp_size=self.world_size), # TP only
pre_norm=self.pre_norm,
do_layer_norm_before=self.do_layer_norm_before)
elif family == "llama":
tensorrt_llm_model = tensorrt_llm.models.LLaMAForCausalLM(
num_layers=self.num_layers,
num_heads=self.num_heads,
num_kv_heads=self.num_kv_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.n_positions,
dtype=kv_dtype,
mlp_hidden_size=self.inter_size,
mapping=tensorrt_llm.Mapping(
world_size=self.world_size,
tp_size=self.world_size), # TP only
quant_mode=self.quant_mode)
elif family == "gptj":
tensorrt_llm_model = tensorrt_llm.models.GPTJForCausalLM(
num_layers=self.num_layers,
num_heads=self.num_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.n_positions,
rotary_dim=self.rotary_dim,
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(
world_size=self.world_size,
tp_size=self.world_size), # TP only
quant_mode=self.quant_mode)
elif family == "gptneox":
tensorrt_llm_model = tensorrt_llm.models.GPTNeoXForCausalLM(
num_layers=self.num_layers,
num_heads=self.num_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.n_positions,
rotary_dim=self.rotary_dim,
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(
world_size=self.world_size,
tp_size=self.world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling)
elif family == "chatglm":
tensorrt_llm_model = tensorrt_llm.models.ChatGLMHeadModel(
num_layers=self.num_layers,
num_heads=self.num_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.n_positions,
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(
world_size=self.world_size,
tp_size=self.world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling,
quant_mode=self.quant_mode,
model_version="1")
elif family == "chatglm2":
tensorrt_llm_model = tensorrt_llm.models.ChatGLMHeadModel(
num_layers=self.num_layers,
num_heads=self.num_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.n_positions,
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(
world_size=self.world_size,
tp_size=self.world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling,
quant_mode=self.quant_mode,
model_version="2")
elif family == "chatglm3":
tensorrt_llm_model = tensorrt_llm.models.ChatGLMHeadModel(
num_layers=self.num_layers,
num_heads=self.num_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.n_positions,
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(
world_size=self.world_size,
tp_size=self.world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling,
quant_mode=self.quant_mode,
model_version="3")
elif family == "bloom":
tensorrt_llm_model = tensorrt_llm.models.BloomForCausalLM(
num_layers=self.num_layers,
num_heads=self.num_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
max_position_embeddings=self.n_positions,
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(
world_size=self.world_size,
tp_size=self.world_size), # TP only
quant_mode=self.quant_mode,
use_parallel_embedding=(self.model_name == 'bloom_176b'))
elif family == "falcon":
tensorrt_llm_model = tensorrt_llm.models.FalconForCausalLM(
num_layers=self.num_layers,
num_heads=self.num_heads,
num_kv_heads=self.num_kv_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
max_position_embeddings=self.n_positions,
dtype=kv_dtype,
bias=self.bias,
use_alibi=self.use_alibi,
new_decoder_architecture=self.new_decoder_architecture,
parallel_attention=self.parallel_attention,
mapping=tensorrt_llm.Mapping(world_size=self.world_size,
tp_size=self.world_size))
else:
raise Exception(f'Unexpected model: {self.model_name}')
quant_kwargs = {}
if family == "llama" and self.use_weight_only:
if self.weight_only_precision == 'int4_awq':
quant_kwargs = {
"group_size": 128,
"zero": False,
"pre_quant_scale": True,
"exclude_modules": [],
}
elif self.weight_only_precision == 'int4_gptq':
quant_kwargs = {
"group_size": 128,
"zero": True,
"pre_quant_scale": False,
}
tensorrt_llm_model = quantize_model(tensorrt_llm_model, self.quant_mode,
**quant_kwargs)
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
not_fp8_quantization = self.quantization is None or "fp8" not in self.quantization
if self.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=self.use_gpt_attention_plugin)
if self.use_gemm_plugin and not_fp8_quantization:
network.plugin_config.set_gemm_plugin(dtype=self.use_gemm_plugin)
if self.use_layernorm_plugin:
network.plugin_config.set_layernorm_plugin(
dtype=self.use_layernorm_plugin)
if self.use_rmsnorm_plugin:
network.plugin_config.set_rmsnorm_plugin(
dtype=self.use_rmsnorm_plugin)
if self.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if self.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
# Quantization plugins.
if self.use_smooth_quant:
network.plugin_config.set_smooth_quant_gemm_plugin(dtype=self.dtype)
network.plugin_config.set_layernorm_quantization_plugin(
dtype=self.dtype)
network.plugin_config.set_quantize_tensor_plugin()
network.plugin_config.set_quantize_per_token_plugin()
elif self.use_weight_only:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=self.dtype)
# RMS norm plugin for SmoothQuant
if self.quant_mode.has_act_and_weight_quant(
) and 'llama' in self.model_name:
network.plugin_config.set_rmsnorm_quantization_plugin()
if self.world_size > 1:
network.plugin_config.set_nccl_plugin(self.dtype,
self.enable_custom_all_reduce)
# Use the plugin for the embedding parallelism and sharing
network.plugin_config.set_lookup_plugin(dtype=self.use_lookup_plugin)
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_model.named_parameters())
# Forward
inputs = tensorrt_llm_model.prepare_inputs(self.max_batch_size,
self.max_input_len,
self.max_output_len,
True, self.num_beams)
tensorrt_llm_model(*inputs)
if self.fuse_bias:
tensorrt_llm.graph_rewriting.optimize(network)
# Network -> Engine
start = time.time()
engine = builder.build_engine(network, builder_config)
end = time.time()
self.build_time = round(end - start, 2)
if self.output_dir is not None:
os.makedirs(self.output_dir, exist_ok=True)
self.serialize_path = os.path.join(self.output_dir,
self.engine_name)
serialize_engine(engine, self.serialize_path)
if self.runtime_rank == 0:
config_path = os.path.join(self.output_dir, 'config.json')
builder_config.plugin_config = network.plugin_config
builder.save_config(builder_config, config_path)
return engine
def run(self, inputs, config):
batch_size, inlen, outlen = config[0], config[1], config[2]
self.decoder.setup(batch_size, inlen, outlen, beam_width=self.num_beams)
if self.remove_input_padding:
self.decoder.decode_batch(inputs[0], self.sampling_config)
else:
self.decoder.decode(inputs[0], inputs[1], self.sampling_config)
torch.cuda.synchronize()
def report(self, config, latency, percentile95, percentile99, peak_gpu_used,
csv):
report_dict = super().get_report_dict()
batch_size, inlen, outlen = config[0], config[1], config[2]
tokens_per_sec = round(batch_size * outlen / (latency / 1000), 2)
report_dict["num_heads"] = self.num_heads
report_dict["num_kv_heads"] = self.num_kv_heads
report_dict["num_layers"] = self.num_layers
report_dict["hidden_size"] = self.hidden_size
report_dict["vocab_size"] = self.vocab_size
report_dict["batch_size"] = batch_size
report_dict["input_length"] = inlen
report_dict["output_length"] = outlen
report_dict["latency(ms)"] = latency
report_dict["build_time(s)"] = self.build_time
report_dict["tokens_per_sec"] = tokens_per_sec
report_dict["percentile95(ms)"] = percentile95
report_dict["percentile99(ms)"] = percentile99
report_dict["gpu_peak_mem(gb)"] = peak_gpu_used
if self.runtime_rank == 0:
if csv:
line = ",".join([str(v) for v in report_dict.values()])
print(line)
with open(self.get_csv_filename(), "a") as file:
file.write(line + "\n")
else:
kv_pairs = [f"{k} {v}" for k, v in report_dict.items()]
line = '[BENCHMARK] ' + " ".join(kv_pairs)
print(line)