mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-10 13:03:34 +08:00
* Update TensorRT-LLM --------- Co-authored-by: wangruohui <12756472+wangruohui@users.noreply.github.com>
367 lines
16 KiB
Python
367 lines
16 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import time
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm._utils import str_dtype_to_torch, torch_to_numpy
|
|
from tensorrt_llm.quantization import QuantMode
|
|
|
|
|
|
def tile_kv_weight_bias(v, kv_num_head, tp_size):
|
|
head_size = v.shape[0] // kv_num_head
|
|
reps = tp_size // kv_num_head
|
|
if v.ndim == 1:
|
|
v = v.reshape(kv_num_head, head_size)[:, None, :]
|
|
v = v.expand(kv_num_head, reps, head_size).reshape(-1).clone()
|
|
else:
|
|
hidden_size = v.shape[1]
|
|
v = v.reshape(kv_num_head, head_size, hidden_size)[:, None, :, :]
|
|
v = v.expand(kv_num_head, reps, head_size,
|
|
hidden_size).reshape(-1, hidden_size).clone()
|
|
return v
|
|
|
|
|
|
def split_qkv(v, tp_size, rank, hidden_size, num_heads, num_kv_heads):
|
|
head_size = hidden_size // num_heads
|
|
if tp_size == 1:
|
|
return v
|
|
|
|
assert v.shape[0] == hidden_size + head_size * num_kv_heads * 2
|
|
query = v[:hidden_size]
|
|
key = v[hidden_size:hidden_size + head_size * num_kv_heads]
|
|
value = v[hidden_size + head_size * num_kv_heads:hidden_size +
|
|
head_size * num_kv_heads * 2]
|
|
|
|
if num_kv_heads < tp_size:
|
|
key = tile_kv_weight_bias(key, num_kv_heads, tp_size)
|
|
value = tile_kv_weight_bias(value, num_kv_heads, tp_size)
|
|
assert (key.shape[0] % (tp_size * head_size)) == 0
|
|
assert (value.shape[0] % (tp_size * head_size)) == 0
|
|
|
|
q_tmp = torch.chunk(query, tp_size, dim=0)[rank]
|
|
k_tmp = torch.chunk(key, tp_size, dim=0)[rank]
|
|
v_tmp = torch.chunk(value, tp_size, dim=0)[rank]
|
|
return torch.concatenate([q_tmp, k_tmp, v_tmp], dim=0).contiguous()
|
|
|
|
|
|
def load_quant_weight(src, value_dst, scale_dst, plugin_weight_only_quant_type):
|
|
v = torch.transpose(src, dim0=0, dim1=1).contiguous()
|
|
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
v, plugin_weight_only_quant_type)
|
|
value_dst.value = torch_to_numpy(processed_torch_weights)
|
|
scale_dst.value = torch_to_numpy(torch_weight_scales)
|
|
|
|
|
|
def load_from_hf(
|
|
trt_model,
|
|
hf_model,
|
|
mapping=None,
|
|
dtype="float32",
|
|
model_version="3",
|
|
multi_query_mode=False,
|
|
):
|
|
# [TODO] Merge model_version=="1" and model_version>="2"
|
|
tensorrt_llm.logger.info("Loading weights from HF")
|
|
tik = time.time()
|
|
|
|
torch_type = str_dtype_to_torch(dtype)
|
|
quant_mode = getattr(trt_model, 'quant_mode', QuantMode(0))
|
|
if quant_mode.is_int8_weight_only():
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
use_weight_only = quant_mode.is_weight_only()
|
|
|
|
hidden_size = hf_model.config.hidden_size
|
|
num_heads = hf_model.config.num_attention_heads
|
|
|
|
layers_per_pipeline_stage = trt_model.num_layers // mapping.pp_size
|
|
layers_range = list(
|
|
range(mapping.pp_rank * layers_per_pipeline_stage,
|
|
(mapping.pp_rank + 1) * layers_per_pipeline_stage))
|
|
feed_weight_count = 0
|
|
|
|
if model_version == "1":
|
|
num_kv_heads = hf_model.config.num_attention_heads
|
|
|
|
if mapping.is_first_pp_rank():
|
|
# Embedding
|
|
weight = hf_model.transformer.word_embeddings.weight.to(
|
|
torch_type).detach().cpu()
|
|
trt_model.embedding.weight.value = torch_to_numpy(weight)
|
|
feed_weight_count += 1
|
|
if mapping.is_last_pp_rank():
|
|
# Final normalization
|
|
weight = hf_model.transformer.final_layernorm.weight.to(
|
|
torch_type).detach().cpu()
|
|
trt_model.final_norm.weight.value = torch_to_numpy(weight)
|
|
bias = hf_model.transformer.final_layernorm.bias.to(
|
|
torch_type).detach().cpu()
|
|
trt_model.final_norm.bias.value = torch_to_numpy(bias)
|
|
feed_weight_count += 2
|
|
|
|
# Final LM
|
|
weight = hf_model.lm_head.weight.to(torch_type).detach().cpu()
|
|
if weight.shape[0] % mapping.tp_size != 0:
|
|
pad_width = trt_model.lm_head.out_features * mapping.tp_size - weight.shape[
|
|
0]
|
|
weight = F.pad(weight, (0, 0, 0, pad_width))
|
|
split_weight = torch.chunk(weight, mapping.tp_size,
|
|
dim=0)[mapping.rank]
|
|
trt_model.lm_head.weight.value = torch_to_numpy(split_weight)
|
|
feed_weight_count += 1
|
|
|
|
for layer_idx in range(28):
|
|
if layer_idx not in layers_range:
|
|
continue
|
|
i = int(layer_idx) - mapping.pp_rank * layers_per_pipeline_stage
|
|
if i >= trt_model.num_layers:
|
|
continue
|
|
|
|
# Pre normalization
|
|
weight = hf_model.transformer.layers[i].input_layernorm.weight.to(
|
|
torch_type).detach().cpu()
|
|
trt_model.layers[i].pre_norm.weight.value = torch_to_numpy(weight)
|
|
bias = hf_model.transformer.layers[i].input_layernorm.bias.to(
|
|
torch_type).detach().cpu()
|
|
trt_model.layers[i].pre_norm.bias.value = torch_to_numpy(bias)
|
|
feed_weight_count += 2
|
|
|
|
# QKV multiplication weight
|
|
weight = hf_model.transformer.layers[
|
|
i].attention.query_key_value.weight.to(
|
|
torch_type).detach().cpu()
|
|
split_weight = split_qkv(weight, mapping.tp_size, mapping.tp_rank,
|
|
hidden_size, num_heads, num_kv_heads)
|
|
dst = trt_model.layers[i].attention.qkv
|
|
if use_weight_only:
|
|
load_quant_weight(
|
|
src=split_weight,
|
|
value_dst=dst.weight,
|
|
scale_dst=dst.per_channel_scale,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
|
else:
|
|
dst.weight.value = torch_to_numpy(split_weight)
|
|
feed_weight_count += 1
|
|
|
|
# QKV multiplication bias
|
|
bias = hf_model.transformer.layers[
|
|
i].attention.query_key_value.bias.to(torch_type).detach().cpu()
|
|
split_bias = split_qkv(bias, mapping.tp_size, mapping.tp_rank,
|
|
hidden_size, num_heads, num_kv_heads)
|
|
trt_model.layers[i].attention.qkv.bias.value = torch_to_numpy(
|
|
split_bias)
|
|
feed_weight_count += 1
|
|
|
|
# Dense multiplication weight (no bias)
|
|
weight = hf_model.transformer.layers[i].attention.dense.weight.to(
|
|
torch_type).detach().cpu()
|
|
split_weight = torch.chunk(weight, mapping.tp_size,
|
|
dim=1)[mapping.rank]
|
|
dst = trt_model.layers[i].attention.dense
|
|
if use_weight_only:
|
|
load_quant_weight(
|
|
src=split_weight,
|
|
value_dst=dst.weight,
|
|
scale_dst=dst.per_channel_scale,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
|
else:
|
|
dst.weight.value = torch_to_numpy(split_weight)
|
|
feed_weight_count += 1
|
|
|
|
# Post normalization
|
|
weight = hf_model.transformer.layers[
|
|
i].post_attention_layernorm.weight.to(
|
|
torch_type).detach().cpu()
|
|
trt_model.layers[i].post_norm.weight.value = torch_to_numpy(weight)
|
|
bias = hf_model.transformer.layers[
|
|
i].post_attention_layernorm.bias.to(torch_type).detach().cpu()
|
|
trt_model.layers[i].post_norm.bias.value = torch_to_numpy(bias)
|
|
feed_weight_count += 2
|
|
|
|
# Multilayer perceptron h -> 4h (no bias)
|
|
weight = hf_model.transformer.layers[i].mlp.dense_h_to_4h.weight.to(
|
|
torch_type).detach().cpu()
|
|
split_weight = torch.chunk(weight, mapping.tp_size,
|
|
dim=0)[mapping.rank]
|
|
dst = trt_model.layers[i].mlp.fc
|
|
if use_weight_only:
|
|
load_quant_weight(
|
|
src=split_weight,
|
|
value_dst=dst.weight,
|
|
scale_dst=dst.per_channel_scale,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
|
else:
|
|
dst.weight.value = torch_to_numpy(split_weight)
|
|
feed_weight_count += 1
|
|
|
|
# Multilayer perceptron 4h -> h (no bias)
|
|
weight = hf_model.transformer.layers[i].mlp.dense_4h_to_h.weight.to(
|
|
torch_type).detach().cpu()
|
|
split_weight = torch.chunk(weight, mapping.tp_size,
|
|
dim=1)[mapping.rank]
|
|
dst = trt_model.layers[i].mlp.proj
|
|
if use_weight_only:
|
|
load_quant_weight(
|
|
src=split_weight,
|
|
value_dst=dst.weight,
|
|
scale_dst=dst.per_channel_scale,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
|
else:
|
|
dst.weight.value = torch_to_numpy(split_weight)
|
|
feed_weight_count += 1
|
|
|
|
assert feed_weight_count == 4 + trt_model.num_layers * 9, "Some weights not loaded from HF"
|
|
|
|
else:
|
|
num_kv_heads = hf_model.config.multi_query_group_num
|
|
|
|
if mapping.is_first_pp_rank():
|
|
# Embedding
|
|
weight = hf_model.transformer.embedding.word_embeddings.weight.to(
|
|
torch_type).detach().cpu()
|
|
trt_model.embedding.weight.value = torch_to_numpy(weight)
|
|
feed_weight_count += 1
|
|
if mapping.is_last_pp_rank():
|
|
# Final normalization
|
|
weight = hf_model.transformer.encoder.final_layernorm.weight.to(
|
|
torch_type).detach().cpu()
|
|
trt_model.final_norm.weight.value = torch_to_numpy(weight)
|
|
feed_weight_count += 1
|
|
|
|
# Final LM
|
|
weight = hf_model.transformer.output_layer.weight.to(
|
|
torch_type).detach().cpu()
|
|
if weight.shape[0] % mapping.tp_size != 0:
|
|
pad_width = trt_model.lm_head.out_features * mapping.tp_size - weight.shape[
|
|
0]
|
|
weight = F.pad(weight, (0, 0, 0, pad_width))
|
|
split_weight = torch.chunk(weight, mapping.tp_size,
|
|
dim=0)[mapping.rank]
|
|
trt_model.lm_head.weight.value = torch_to_numpy(split_weight)
|
|
feed_weight_count += 1
|
|
|
|
for layer_idx in range(28):
|
|
if layer_idx not in layers_range:
|
|
continue
|
|
i = int(layer_idx) - mapping.pp_rank * layers_per_pipeline_stage
|
|
if i >= trt_model.num_layers:
|
|
continue
|
|
|
|
# Pre normalization
|
|
weight = hf_model.transformer.encoder.layers[
|
|
i].input_layernorm.weight.to(torch_type).detach().cpu()
|
|
trt_model.layers[i].pre_norm.weight.value = torch_to_numpy(weight)
|
|
feed_weight_count += 1
|
|
|
|
# QKV multiplication weight
|
|
weight = hf_model.transformer.encoder.layers[
|
|
i].self_attention.query_key_value.weight.to(
|
|
torch_type).detach().cpu()
|
|
split_weight = split_qkv(weight, mapping.tp_size, mapping.tp_rank,
|
|
hidden_size, num_heads, num_kv_heads)
|
|
dst = trt_model.layers[i].attention.qkv
|
|
if use_weight_only:
|
|
load_quant_weight(
|
|
src=split_weight,
|
|
value_dst=dst.weight,
|
|
scale_dst=dst.per_channel_scale,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
|
else:
|
|
dst.weight.value = torch_to_numpy(split_weight)
|
|
feed_weight_count += 1
|
|
|
|
# QKV multiplication bias
|
|
bias = hf_model.transformer.encoder.layers[
|
|
i].self_attention.query_key_value.bias.to(
|
|
torch_type).detach().cpu()
|
|
split_bias = split_qkv(bias, mapping.tp_size, mapping.tp_rank,
|
|
hidden_size, num_heads, num_kv_heads)
|
|
trt_model.layers[i].attention.qkv.bias.value = torch_to_numpy(
|
|
split_bias)
|
|
feed_weight_count += 1
|
|
|
|
# Dense multiplication weight (no bias)
|
|
weight = hf_model.transformer.encoder.layers[
|
|
i].self_attention.dense.weight.to(torch_type).detach().cpu()
|
|
split_weight = torch.chunk(weight, mapping.tp_size,
|
|
dim=1)[mapping.rank]
|
|
dst = trt_model.layers[i].attention.dense
|
|
if use_weight_only:
|
|
load_quant_weight(
|
|
src=split_weight,
|
|
value_dst=dst.weight,
|
|
scale_dst=dst.per_channel_scale,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
|
else:
|
|
dst.weight.value = torch_to_numpy(split_weight)
|
|
feed_weight_count += 1
|
|
|
|
# Post normalization
|
|
weight = hf_model.transformer.encoder.layers[
|
|
i].post_attention_layernorm.weight.to(
|
|
torch_type).detach().cpu()
|
|
trt_model.layers[i].post_norm.weight.value = torch_to_numpy(weight)
|
|
feed_weight_count += 1
|
|
|
|
# Multilayer perceptron h -> 4h (no bias)
|
|
weight = hf_model.transformer.encoder.layers[
|
|
i].mlp.dense_h_to_4h.weight.to(torch_type).detach().cpu()
|
|
split_weight = torch.chunk(weight, 2 * mapping.tp_size, dim=0)
|
|
# swap first and second half weight in columns to adapt trt_llm Swiglu
|
|
split_weight = torch.cat(
|
|
[
|
|
split_weight[mapping.rank + mapping.tp_size],
|
|
split_weight[mapping.rank],
|
|
],
|
|
dim=0,
|
|
)
|
|
dst = trt_model.layers[i].mlp.fc
|
|
if use_weight_only:
|
|
load_quant_weight(
|
|
src=split_weight,
|
|
value_dst=dst.weight,
|
|
scale_dst=dst.per_channel_scale,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
|
else:
|
|
dst.weight.value = torch_to_numpy(split_weight)
|
|
feed_weight_count += 1
|
|
|
|
# Multilayer perceptron 4h -> h (no bias)
|
|
weight = hf_model.transformer.encoder.layers[
|
|
i].mlp.dense_4h_to_h.weight.to(torch_type).detach().cpu()
|
|
split_weight = torch.chunk(weight, mapping.tp_size,
|
|
dim=1)[mapping.rank]
|
|
dst = trt_model.layers[i].mlp.proj
|
|
if use_weight_only:
|
|
load_quant_weight(
|
|
src=split_weight,
|
|
value_dst=dst.weight,
|
|
scale_dst=dst.per_channel_scale,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
|
else:
|
|
dst.weight.value = torch_to_numpy(split_weight)
|
|
feed_weight_count += 1
|
|
|
|
assert feed_weight_count == 3 + trt_model.num_layers * 7, "Some weights not loaded from HF"
|
|
|
|
tok = time.time()
|
|
|
|
tensorrt_llm.logger.info("Loading weights finish in %.2fs" % (tok - tik))
|
|
return trt_model
|