TensorRT-LLMs/examples/model_api/llama_multi_gpu.py
Kaiyu Xie 385626572d
Update TensorRT-LLM (#2502)
* Update TensorRT-LLM

---------

Co-authored-by: 岑灿 <yunyi.hyy@alibaba-inc.com>
2024-11-26 16:51:34 +08:00

98 lines
3.4 KiB
Python

import argparse
import os
from cuda import cudart
from mpi4py.futures import MPIPoolExecutor
from transformers import AutoTokenizer
from tensorrt_llm import BuildConfig, Mapping, build, mpi_barrier
from tensorrt_llm.executor import GenerationExecutor, SamplingParams
from tensorrt_llm.models import LLaMAForCausalLM
def dataset():
input_text = [
'Born in north-east France, Soyer trained as a',
"What is large language model?"
]
return input_text
def build_and_run_llama(hf_model_dir, engine_dir, tp_size, rank):
#tensorrt_llm.logger.set_level('verbose')
status, = cudart.cudaSetDevice(rank)
assert status == cudart.cudaError_t.cudaSuccess, f"cuda set device to {rank} errored: {status}"
## Build engine
build_config = BuildConfig(max_input_len=256,
max_seq_len=512,
max_batch_size=8)
build_config.plugin_config.gemm_plugin = 'auto' # for fast build, tune inference perf based on your needs
mapping = Mapping(world_size=tp_size, rank=rank, tp_size=tp_size)
llama = LLaMAForCausalLM.from_hugging_face(hf_model_dir, mapping=mapping)
engine = build(llama, build_config)
engine.save(engine_dir)
mpi_barrier() # make sure every rank engine build finished
## Generation
tokenizer = AutoTokenizer.from_pretrained(hf_model_dir)
sampling_params = SamplingParams(max_tokens=20)
with GenerationExecutor.create(engine_dir) as executor:
if rank == 0:
for inp in dataset():
stream_output = executor.generate_async(
tokenizer.encode(inp),
sampling_params=sampling_params,
streaming=True)
for state in stream_output:
print(
f"Output: {tokenizer.decode(state.outputs[0].token_ids)}"
)
mpi_barrier()
return True
def parse_args():
parser = argparse.ArgumentParser(description="Llama single model example")
parser.add_argument(
"--engine_dir",
type=str,
required=True,
help=
"Directory to save and load the engine. When -c is specified, always rebuild and save to this dir. When -c is not specified, load engine when the engine_dir exists, rebuild otherwise"
)
parser.add_argument(
"--hf_model_dir",
type=str,
required=True,
help="Read the model data and tokenizer from this directory")
parser.add_argument("-n",
"--tp_size",
type=int,
default=2,
help="TP size to run the model")
return parser.parse_args()
def main(args):
status, gpus = cudart.cudaGetDeviceCount()
assert status == 0 and gpus >= args.tp_size, f"The test needs at least {args.tp_size} GPUs, skipping"
if not os.path.exists(args.engine_dir):
os.makedirs(args.engine_dir, exist_ok=True)
## Build engine in parallel
with MPIPoolExecutor(max_workers=args.tp_size) as pool:
results = pool.map(build_and_run_llama,
[args.hf_model_dir] * args.tp_size,
[args.engine_dir] * args.tp_size,
[args.tp_size] * args.tp_size, range(args.tp_size))
for r in results:
assert r is True
if __name__ == "__main__":
args = parse_args()
main(args)