TensorRT-LLMs/scripts/build_wheel.py
Zhenhua Wang 59d91b8b94
[None][chore] add online help to build_wheel.py and fix a doc link (#6391)
Signed-off-by: Zhenhua Wang <zhenhuaw@nvidia.com>
2025-08-04 13:14:55 +08:00

931 lines
36 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import platform
import sys
import sysconfig
import warnings
from argparse import ArgumentParser
from contextlib import contextmanager
from functools import partial
from multiprocessing import cpu_count
from pathlib import Path
from shutil import copy, copytree, rmtree
from subprocess import DEVNULL, CalledProcessError, check_output, run
from textwrap import dedent
from typing import List
try:
from packaging.requirements import Requirement
except (ImportError, ModuleNotFoundError):
from pip._vendor.packaging.requirements import Requirement
build_run = partial(run, shell=True, check=True)
@contextmanager
def working_directory(path):
"""Changes working directory and returns to previous on exit."""
prev_cwd = Path.cwd()
os.chdir(path)
try:
yield
finally:
os.chdir(prev_cwd)
def get_project_dir():
return Path(__file__).parent.resolve().parent
def get_source_dir():
return get_project_dir() / "cpp"
def get_build_dir(build_dir, build_type):
if build_dir is None:
build_dir = get_source_dir() / ("build" if build_type == "Release" else
f"build_{build_type}")
else:
build_dir = Path(build_dir).resolve()
return build_dir
def clear_folder(folder_path):
for item in os.listdir(folder_path):
item_path = os.path.join(folder_path, item)
if os.path.isdir(item_path) and not os.path.islink(item_path):
rmtree(item_path)
else:
try:
os.remove(item_path)
except (OSError, IOError) as e:
print(f"Failed to remove {item_path}: {e}", file=sys.stderr)
def sysconfig_scheme(override_vars=None):
# Backported 'venv' scheme from Python 3.11+
if os.name == 'nt':
scheme = {
'purelib': '{base}/Lib/site-packages',
'scripts': '{base}/Scripts',
}
else:
scheme = {
'purelib': '{base}/lib/python{py_version_short}/site-packages',
'scripts': '{base}/bin',
}
vars_ = sysconfig.get_config_vars()
if override_vars:
vars_.update(override_vars)
return {key: value.format(**vars_) for key, value in scheme.items()}
def create_venv(project_dir: Path):
py_major = sys.version_info.major
py_minor = sys.version_info.minor
venv_prefix = project_dir / f".venv-{py_major}.{py_minor}"
print(
f"-- Using virtual environment at: {venv_prefix} (Python {py_major}.{py_minor})"
)
# Ensure compatible virtualenv version is installed (>=20.29.1, <22.0)
print("-- Ensuring virtualenv version >=20.29.1,<22.0 is installed...")
build_run(f'"{sys.executable}" -m pip install "virtualenv>=20.29.1,<22.0"')
# Create venv if it doesn't exist
if not venv_prefix.exists():
print(f"-- Creating virtual environment in {venv_prefix}...")
build_run(
f'"{sys.executable}" -m virtualenv --system-site-packages "{venv_prefix}"'
)
else:
print("-- Virtual environment already exists.")
return venv_prefix
def setup_venv(project_dir: Path, requirements_file: Path, no_venv: bool):
"""Creates/updates a venv and installs requirements.
Args:
project_dir: The root directory of the project.
requirements_file: Path to the requirements file.
no_venv: Use current Python environment as is.
Returns:
Tuple[Path, Path]: Paths to the python and conan executables in the venv.
"""
if no_venv or sys.prefix != sys.base_prefix:
reason = "Explicitly requested by user" if no_venv else "Already inside virtual environment"
print(f"-- {reason}, using environment {sys.prefix} as is.")
venv_prefix = Path(sys.prefix)
else:
venv_prefix = create_venv(project_dir)
scheme = sysconfig_scheme({'base': venv_prefix})
# Determine venv executable paths
scripts_dir = Path(scheme["scripts"])
venv_python = venv_prefix / sys.executable.removeprefix(sys.prefix)[1:]
if os.environ.get("NVIDIA_PYTORCH_VERSION"):
# Ensure PyPI PyTorch is not installed in the venv
purelib_dir = Path(scheme["purelib"])
pytorch_package_dir = purelib_dir / "torch"
if str(venv_prefix) != sys.base_prefix and pytorch_package_dir.exists():
warnings.warn(
f"Using the NVIDIA PyTorch container with PyPI distributed PyTorch may lead to compatibility issues.\n"
f"If you encounter any problems, please delete the environment at `{venv_prefix}` so that "
f"`build_wheel.py` can recreate the virtual environment correctly."
)
print("^^^^^^^^^^ IMPORTANT WARNING ^^^^^^^^^^", file=sys.stderr)
input("Press Ctrl+C to stop, any key to continue...\n")
# Ensure inherited PyTorch version is compatible
try:
info = check_output(
[str(venv_python), "-m", "pip", "show", "torch"])
except CalledProcessError:
raise RuntimeError(
"NVIDIA PyTorch container detected, but cannot find PyTorch installation. "
"The environment is corrupted. Please recreate your container.")
version_installed = next(
line.removeprefix("Version: ")
for line in info.decode().splitlines()
if line.startswith("Version: "))
version_required = None
try:
with open(requirements_file) as fp:
for line in fp:
if line.startswith("torch"):
version_required = Requirement(line)
break
except FileNotFoundError:
pass
if version_required is not None:
if version_installed not in version_required.specifier:
raise RuntimeError(
f"Incompatible NVIDIA PyTorch container detected. "
f"The container provides PyTorch version {version_installed}, "
f"but current revision requires {version_required}. "
f"Please recreate your container using image specified in .devcontainer/docker-compose.yml. "
f"NOTE: Please don't try install PyTorch using pip. "
f"Using the NVIDIA PyTorch container with PyPI distributed PyTorch may lead to compatibility issues."
)
# Install/update requirements
print(
f"-- Installing requirements from {requirements_file} into {venv_prefix}..."
)
build_run(f'"{venv_python}" -m pip install -r "{requirements_file}"')
venv_conan = setup_conan(scripts_dir, venv_python)
return venv_python, venv_conan
def setup_conan(scripts_dir, venv_python):
build_run(f'"{venv_python}" -m pip install conan==2.14.0')
# Determine the path to the conan executable within the venv
venv_conan = scripts_dir / "conan"
if not venv_conan.exists():
# Attempt to find it using shutil.which as a fallback, in case it's already installed in the system
try:
result = build_run(
f'''{venv_python} -c "import shutil; print(shutil.which('conan'))" ''',
capture_output=True,
text=True)
conan_path_str = result.stdout.strip()
if conan_path_str:
venv_conan = Path(conan_path_str)
print(
f"-- Found conan executable via PATH search at: {venv_conan}"
)
else:
raise RuntimeError(
f"Failed to locate conan executable in virtual environment {scripts_dir} or system PATH."
)
except CalledProcessError as e:
print(f"Fallback search command output: {e.stdout}",
file=sys.stderr)
print(f"Fallback search command error: {e.stderr}", file=sys.stderr)
raise RuntimeError(
f"Failed to locate conan executable in virtual environment {scripts_dir} or system PATH."
)
else:
print(f"-- Found conan executable at: {venv_conan}")
# Create default profile
build_run(f'"{venv_conan}" profile detect -f')
# Add the tensorrt-llm remote if it doesn't exist
build_run(
f'"{venv_conan}" remote add --force tensorrt-llm https://edge.urm.nvidia.com/artifactory/api/conan/sw-tensorrt-llm-conan',
stdout=DEVNULL,
stderr=DEVNULL)
return venv_conan
def generate_fmha_cu(project_dir, venv_python):
fmha_v2_cu_dir = project_dir / "cpp/tensorrt_llm/kernels/contextFusedMultiHeadAttention/fmha_v2_cu"
fmha_v2_cu_dir.mkdir(parents=True, exist_ok=True)
fmha_v2_dir = project_dir / "cpp/kernels/fmha_v2"
os.chdir(fmha_v2_dir)
env = os.environ.copy()
env.update({
"TORCH_CUDA_ARCH_LIST": "9.0",
"ENABLE_SM89_QMMA": "1",
"ENABLE_HMMA_FP32": "1",
"GENERATE_CUBIN": "1",
"SCHEDULING_MODE": "1",
"ENABLE_SM100": "1",
"ENABLE_SM120": "1",
"GENERATE_CU_TRTLLM": "true"
})
build_run("rm -rf generated")
build_run("rm -rf temp")
build_run("rm -rf obj")
build_run("python3 setup.py", env=env)
# Copy generated header file when cu path is active and cubins are deleted.
cubin_dir = project_dir / "cpp/tensorrt_llm/kernels/contextFusedMultiHeadAttention/cubin"
build_run(f"mv generated/fmha_cubin.h {cubin_dir}")
for cu_file in (fmha_v2_dir / "generated").glob("*sm*.cu"):
build_run(f"mv {cu_file} {fmha_v2_cu_dir}")
os.chdir(project_dir)
def main(*,
build_type: str = "Release",
generator: str = "",
build_dir: Path = None,
dist_dir: Path = None,
cuda_architectures: str = None,
job_count: int = None,
extra_cmake_vars: List[str] = list(),
extra_make_targets: str = "",
trt_root: str = '/usr/local/tensorrt',
nccl_root: str = None,
nixl_root: str = None,
internal_cutlass_kernels_root: str = None,
clean: bool = False,
clean_wheel: bool = False,
configure_cmake: bool = False,
use_ccache: bool = False,
fast_build: bool = False,
cpp_only: bool = False,
install: bool = False,
skip_building_wheel: bool = False,
linking_install_binary: bool = False,
binding_type: str = "pybind",
benchmarks: bool = False,
micro_benchmarks: bool = False,
nvtx: bool = False,
skip_stubs: bool = False,
generate_fmha: bool = False,
no_venv: bool = False,
nvrtc_dynamic_linking: bool = False):
if clean:
clean_wheel = True
project_dir = get_project_dir()
os.chdir(project_dir)
# Get all submodules and check their folder exists. If not,
# invoke git submodule update
with open(project_dir / ".gitmodules", "r") as submodules_f:
submodules = [
l.split("=")[1].strip() for l in submodules_f.readlines()
if "path = " in l
]
if any(not (project_dir / submodule / ".git").exists()
for submodule in submodules):
build_run('git submodule update --init --recursive')
on_windows = platform.system() == "Windows"
requirements_filename = "requirements-dev-windows.txt" if on_windows else "requirements-dev.txt"
# Setup venv and install requirements
venv_python, venv_conan = setup_venv(project_dir,
project_dir / requirements_filename,
no_venv)
# Ensure base TRT is installed (check inside the venv)
try:
check_output([str(venv_python), "-m", "pip", "show", "tensorrt"])
except CalledProcessError:
error_msg = "TensorRT was not installed properly."
if on_windows:
error_msg += (
" Please download the TensorRT zip file manually,"
" install it and relaunch build_wheel.py."
" See https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-zip for more details."
)
else:
error_msg += f" Please install tensorrt into the venv using \"`{venv_python}` -m pip install tensorrt\" and relaunch build_wheel.py"
raise RuntimeError(error_msg)
if cuda_architectures is not None:
if "70-real" in cuda_architectures:
raise RuntimeError("Volta architecture is deprecated support.")
cuda_architectures = cuda_architectures or 'all'
cmake_cuda_architectures = f'"-DCMAKE_CUDA_ARCHITECTURES={cuda_architectures}"'
cmake_def_args = []
cmake_generator = ""
if on_windows:
# Windows does not support multi-device currently.
extra_cmake_vars.extend(["ENABLE_MULTI_DEVICE=0"])
# The Ninja CMake generator is used for our Windows build
# (Easier than MSBuild to make compatible with our Docker image)
if generator:
cmake_generator = "-G" + generator
if job_count is None:
job_count = cpu_count()
if len(extra_cmake_vars):
# Backwards compatibility, we also support semicolon expansion for each value.
# However, it is best to use flag multiple-times due to issues with spaces in CLI.
expanded_args = []
for var in extra_cmake_vars:
expanded_args += var.split(";")
extra_cmake_vars = ["\"-D{}\"".format(var) for var in expanded_args]
# Don't include duplicate conditions
cmake_def_args.extend(set(extra_cmake_vars))
if trt_root is not None:
cmake_def_args.append(f"-DTensorRT_ROOT={trt_root}")
if nccl_root is not None:
cmake_def_args.append(f"-DNCCL_ROOT={nccl_root}")
if nixl_root is not None:
cmake_def_args.append(f"-DNIXL_ROOT={nixl_root}")
build_dir = get_build_dir(build_dir, build_type)
first_build = not Path(build_dir, "CMakeFiles").exists()
if clean and build_dir.exists():
clear_folder(build_dir) # Keep the folder in case it is mounted.
build_dir.mkdir(parents=True, exist_ok=True)
def get_binding_type_from_cache():
cmake_cache_file = build_dir / "CMakeCache.txt"
if not cmake_cache_file.exists():
return None
with open(cmake_cache_file, 'r') as f:
for line in f:
if line.startswith("BINDING_TYPE:STRING="):
cashed_binding_type = line.split("=", 1)[1].strip()
if cashed_binding_type in ['pybind', 'nanobind']:
return cashed_binding_type
return None
cached_binding_type = get_binding_type_from_cache()
if not first_build and cached_binding_type != binding_type:
# Clean up of previous binding build artifacts
nanobind_dir = build_dir / "tensorrt_llm" / "nanobind"
if nanobind_dir.exists():
rmtree(nanobind_dir)
nanobind_stub_file = project_dir / "tensorrt_llm" / "bindings.pyi"
if nanobind_stub_file.exists():
nanobind_stub_file.unlink()
pybind_dir = build_dir / "tensorrt_llm" / "pybind"
if pybind_dir.exists():
rmtree(pybind_dir)
pybind_stub_dir = project_dir / "tensorrt_llm" / "bindings"
if pybind_stub_dir.exists():
rmtree(pybind_stub_dir)
configure_cmake = True
if use_ccache:
cmake_def_args.append(
f"-DCMAKE_CXX_COMPILER_LAUNCHER=ccache -DCMAKE_CUDA_COMPILER_LAUNCHER=ccache"
)
if fast_build:
cmake_def_args.append(f"-DFAST_BUILD=ON")
if nvrtc_dynamic_linking:
cmake_def_args.append(f"-DNVRTC_DYNAMIC_LINKING=ON")
targets = ["tensorrt_llm", "nvinfer_plugin_tensorrt_llm"]
if cpp_only:
build_pyt = "OFF"
build_deep_ep = "OFF"
else:
targets.extend(["th_common", "bindings", "deep_ep"])
build_pyt = "ON"
build_deep_ep = "ON"
if benchmarks:
targets.append("benchmarks")
if micro_benchmarks:
targets.append("micro_benchmarks")
build_micro_benchmarks = "ON"
else:
build_micro_benchmarks = "OFF"
disable_nvtx = "OFF" if nvtx else "ON"
if not on_windows:
targets.append("executorWorker")
source_dir = get_source_dir()
fmha_v2_cu_dir = project_dir / "cpp/tensorrt_llm/kernels/contextFusedMultiHeadAttention/fmha_v2_cu"
if clean or generate_fmha:
build_run(f"rm -rf {fmha_v2_cu_dir}")
generate_fmha_cu(project_dir, venv_python)
elif not fmha_v2_cu_dir.exists():
generate_fmha_cu(project_dir, venv_python)
with working_directory(build_dir):
if clean or first_build or configure_cmake:
build_run(
f"\"{venv_conan}\" install --build=missing --remote=tensorrt-llm --output-folder={build_dir}/conan -s 'build_type={build_type}' {source_dir}"
)
cmake_def_args.append(
f"-DCMAKE_TOOLCHAIN_FILE={build_dir}/conan/conan_toolchain.cmake"
)
if internal_cutlass_kernels_root:
cmake_def_args.append(
f"-DINTERNAL_CUTLASS_KERNELS_PATH={internal_cutlass_kernels_root}"
)
cmake_def_args = " ".join(cmake_def_args)
cmake_configure_command = (
f'cmake -DCMAKE_BUILD_TYPE="{build_type}" -DBUILD_PYT="{build_pyt}" -DBINDING_TYPE="{binding_type}" -DBUILD_DEEP_EP="{build_deep_ep}"'
f' -DNVTX_DISABLE="{disable_nvtx}" -DBUILD_MICRO_BENCHMARKS={build_micro_benchmarks}'
f' -DBUILD_WHEEL_TARGETS="{";".join(targets)}"'
f' -DPython_EXECUTABLE={venv_python} -DPython3_EXECUTABLE={venv_python}'
f' {cmake_cuda_architectures} {cmake_def_args} {cmake_generator} -S "{source_dir}"'
)
print("CMake Configure command: ")
print(cmake_configure_command)
build_run(cmake_configure_command)
cmake_build_command = (
f'cmake --build . --config {build_type} --parallel {job_count} '
f'--target build_wheel_targets {" ".join(extra_make_targets)}')
print("CMake Build command: ")
print(cmake_build_command)
build_run(cmake_build_command)
if cpp_only:
assert not install, "Installing is not supported for cpp_only builds"
return
pkg_dir = project_dir / "tensorrt_llm"
assert pkg_dir.is_dir(), f"{pkg_dir} is not a directory"
lib_dir = pkg_dir / "libs"
include_dir = pkg_dir / "include"
if lib_dir.exists():
clear_folder(lib_dir)
if include_dir.exists():
clear_folder(include_dir)
cache_dir = os.getenv("TRTLLM_DG_CACHE_DIR")
if cache_dir is not None:
cache_dir = Path(cache_dir)
elif on_windows:
if os.getenv("APPDATA") is not None:
cache_dir = Path(os.getenv("APPDATA")) / "tensorrt_llm"
else:
cache_dir = Path(os.getenv("TEMP")) / "tensorrt_llm"
else:
if os.getenv("HOME") is not None:
cache_dir = Path(os.getenv("HOME")) / ".tensorrt_llm"
else:
cache_dir = Path(os.getenv("TEMP"), "/tmp") / "tensorrt_llm"
if cache_dir.exists():
clear_folder(cache_dir)
install_file = copy
install_tree = copytree
if skip_building_wheel and linking_install_binary:
def symlink_remove_dst(src, dst):
src = os.path.abspath(src)
dst = os.path.abspath(dst)
if os.path.isdir(dst):
dst = os.path.join(dst, os.path.basename(src))
if os.path.exists(dst):
os.remove(dst)
os.symlink(src, dst)
install_file = symlink_remove_dst
def symlink_remove_dst_tree(src, dst, dirs_exist_ok=True):
src = os.path.abspath(src)
dst = os.path.abspath(dst)
if dirs_exist_ok and os.path.exists(dst):
os.remove(dst)
os.symlink(src, dst)
install_tree = symlink_remove_dst_tree
lib_dir.mkdir(parents=True, exist_ok=True)
include_dir.mkdir(parents=True, exist_ok=True)
install_tree(get_source_dir() / "include" / "tensorrt_llm" / "deep_gemm",
include_dir / "deep_gemm",
dirs_exist_ok=True)
required_cuda_headers = [
"cuda_fp16.h", "cuda_fp16.hpp", "cuda_bf16.h", "cuda_bf16.hpp",
"cuda_fp8.h", "cuda_fp8.hpp"
]
if os.getenv("CUDA_HOME") is not None:
cuda_include_dir = Path(os.getenv("CUDA_HOME")) / "include"
elif os.getenv("CUDA_PATH") is not None:
cuda_include_dir = Path(os.getenv("CUDA_PATH")) / "include"
elif not on_windows:
cuda_include_dir = Path("/usr/local/cuda/include")
else:
cuda_include_dir = None
if cuda_include_dir is None or not cuda_include_dir.exists():
print(
"CUDA_HOME or CUDA_PATH should be set to enable DeepGEMM JIT compilation"
)
else:
cuda_include_target_dir = include_dir / "cuda" / "include"
cuda_include_target_dir.mkdir(parents=True, exist_ok=True)
for header in required_cuda_headers:
install_file(cuda_include_dir / header, include_dir / header)
if on_windows:
install_file(build_dir / "tensorrt_llm/tensorrt_llm.dll",
lib_dir / "tensorrt_llm.dll")
install_file(build_dir / f"tensorrt_llm/thop/th_common.dll",
lib_dir / "th_common.dll")
install_file(
build_dir / f"tensorrt_llm/plugins/nvinfer_plugin_tensorrt_llm.dll",
lib_dir / "nvinfer_plugin_tensorrt_llm.dll")
else:
install_file(build_dir / "tensorrt_llm/libtensorrt_llm.so",
lib_dir / "libtensorrt_llm.so")
install_file(build_dir / "tensorrt_llm/thop/libth_common.so",
lib_dir / "libth_common.so")
install_file(
build_dir /
"tensorrt_llm/plugins/libnvinfer_plugin_tensorrt_llm.so",
lib_dir / "libnvinfer_plugin_tensorrt_llm.so")
if os.path.exists(
build_dir /
"tensorrt_llm/executor/cache_transmission/ucx_utils/libtensorrt_llm_ucx_wrapper.so"
):
install_file(
build_dir /
"tensorrt_llm/executor/cache_transmission/ucx_utils/libtensorrt_llm_ucx_wrapper.so",
lib_dir / "libtensorrt_llm_ucx_wrapper.so")
if os.path.exists(
build_dir /
"tensorrt_llm/executor/cache_transmission/nixl_utils/libtensorrt_llm_nixl_wrapper.so"
):
install_file(
build_dir /
"tensorrt_llm/executor/cache_transmission/nixl_utils/libtensorrt_llm_nixl_wrapper.so",
lib_dir / "libtensorrt_llm_nixl_wrapper.so")
install_file(
build_dir /
"tensorrt_llm/kernels/decoderMaskedMultiheadAttention/libdecoder_attention_0.so",
lib_dir / "libdecoder_attention_0.so")
install_file(
build_dir /
"tensorrt_llm/kernels/decoderMaskedMultiheadAttention/libdecoder_attention_1.so",
lib_dir / "libdecoder_attention_1.so")
deep_ep_dir = pkg_dir / "deep_ep"
if deep_ep_dir.is_symlink():
deep_ep_dir.unlink()
elif deep_ep_dir.is_dir():
clear_folder(deep_ep_dir)
deep_ep_dir.rmdir()
bin_dir = pkg_dir / "bin"
if bin_dir.exists():
clear_folder(bin_dir)
bin_dir.mkdir(parents=True, exist_ok=True)
if not on_windows:
install_file(build_dir / "tensorrt_llm/executor_worker/executorWorker",
bin_dir / "executorWorker")
if not cpp_only:
def get_binding_lib(subdirectory, name):
binding_build_dir = (build_dir / "tensorrt_llm" / subdirectory)
if on_windows:
binding_lib = list(binding_build_dir.glob(f"{name}.*.pyd"))
else:
binding_lib = list(binding_build_dir.glob(f"{name}.*.so"))
assert len(
binding_lib
) == 1, f"Exactly one binding library should be present: {binding_lib}"
return binding_lib[0]
install_file(get_binding_lib(binding_type, "bindings"), pkg_dir)
with (build_dir / "tensorrt_llm" / "deep_ep" /
"cuda_architectures.txt").open() as f:
deep_ep_cuda_architectures = f.read().strip().strip(";")
if deep_ep_cuda_architectures:
install_file(get_binding_lib("deep_ep", "deep_ep_cpp_tllm"),
pkg_dir)
install_tree(build_dir / "tensorrt_llm" / "deep_ep" / "python" /
"deep_ep",
deep_ep_dir,
dirs_exist_ok=True)
(lib_dir / "nvshmem").mkdir(exist_ok=True)
install_file(
build_dir / "tensorrt_llm/deep_ep/nvshmem-build/License.txt",
lib_dir / "nvshmem")
install_file(
build_dir /
"tensorrt_llm/deep_ep/nvshmem-build/src/lib/nvshmem_bootstrap_uid.so.3",
lib_dir / "nvshmem")
install_file(
build_dir /
"tensorrt_llm/deep_ep/nvshmem-build/src/lib/nvshmem_transport_ibgda.so.103",
lib_dir / "nvshmem")
if not skip_stubs:
with working_directory(project_dir):
if binding_type == "nanobind":
build_run(f"\"{venv_python}\" -m pip install nanobind")
else:
build_run(
f"\"{venv_python}\" -m pip install pybind11-stubgen")
with working_directory(pkg_dir):
if on_windows:
if binding_type == "nanobind":
print("Windows not yet supported for nanobind stubs")
exit(1)
else:
stubgen = "stubgen.py"
stubgen_contents = """
# Loading torch, trt before bindings is required to avoid import errors on windows.
# isort: off
import torch
import tensorrt as trt
# isort: on
import os
import platform
from pybind11_stubgen import main
if __name__ == "__main__":
# Load dlls from `libs` directory before launching bindings.
if platform.system() == "Windows":
os.add_dll_directory(r\"{lib_dir}\")
main()
""".format(lib_dir=lib_dir)
(pkg_dir / stubgen).write_text(dedent(stubgen_contents))
build_run(f"\"{venv_python}\" {stubgen} -o . bindings")
(pkg_dir / stubgen).unlink()
else:
env_ld = os.environ.copy()
new_library_path = "/usr/local/cuda/compat:/usr/local/cuda/compat/lib:/usr/local/cuda/compat/lib.real"
if 'LD_LIBRARY_PATH' in env_ld:
new_library_path += f":{env_ld['LD_LIBRARY_PATH']}"
result = build_run("find /usr -name *libnvidia-ml.so*",
capture_output=True,
text=True)
assert result.returncode == 0, f"Failed to run find *libnvidia-ml.so*: {result.stderr}"
# Build containers only contain stub version of libnvidia-ml.so and not the real version.
# If real version not in system, we need to create symbolic link to stub version to prevent import errors.
if "libnvidia-ml.so.1" not in result.stdout:
if "libnvidia-ml.so" in result.stdout:
line = result.stdout.splitlines()[0]
path = os.path.dirname(line)
new_library_path += f":{path}"
build_run(f"ln -s {line} {path}/libnvidia-ml.so.1")
else:
print(
f"Failed to find libnvidia-ml.so: {result.stderr}",
file=sys.stderr)
exit(1)
env_ld["LD_LIBRARY_PATH"] = new_library_path
if binding_type == "nanobind":
build_run(
f"\"{venv_python}\" -m nanobind.stubgen -m bindings -O .",
env=env_ld)
else:
build_run(
f"\"{venv_python}\" -m pybind11_stubgen -o . bindings --exit-code",
env=env_ld)
if deep_ep_cuda_architectures:
build_run(
f"\"{venv_python}\" -m pybind11_stubgen -o . deep_ep_cpp_tllm --exit-code",
env=env_ld)
if not skip_building_wheel:
if dist_dir is None:
dist_dir = project_dir / "build"
else:
dist_dir = Path(dist_dir)
if not dist_dir.exists():
dist_dir.mkdir(parents=True)
if clean_wheel:
# For incremental build, the python build module adds
# the new files but does not remove the deleted files.
#
# This breaks the Windows CI/CD pipeline when building
# and validating python changes in the whl.
clear_folder(dist_dir)
build_run(
f'\"{venv_python}\" -m build {project_dir} --skip-dependency-check --no-isolation --wheel --outdir "{dist_dir}"'
)
if install:
build_run(f"\"{sys.executable}\" -m pip install -e .[devel]")
def add_arguments(parser: ArgumentParser):
parser.add_argument(
"--build_type",
"-b",
default="Release",
choices=["Release", "RelWithDebInfo", "Debug"],
help="Build type, will be passed to cmake `CMAKE_BUILD_TYPE` variable")
parser.add_argument(
"--generator",
"-G",
default="",
help="CMake generator to use (e.g., 'Ninja', 'Unix Makefiles')")
parser.add_argument(
"--cuda_architectures",
"-a",
help=
"CUDA architectures to build for, will be passed to cmake `CUDA_ARCHITECTURES` variable. Example: `--cuda_architectures=90-real;100-real`"
)
parser.add_argument("--install",
"-i",
action="store_true",
help="Install the built python package after building")
parser.add_argument("--clean",
"-c",
action="store_true",
help="Clean the build directory before building")
parser.add_argument(
"--clean_wheel",
action="store_true",
help=
"Clear dist_dir folder when creating wheel. Will be set to `true` if `--clean` is set"
)
parser.add_argument("--configure_cmake",
action="store_true",
help="Always configure cmake before building")
parser.add_argument("--use_ccache",
"-ccache",
default=False,
action="store_true",
help="Use ccache compiler driver for faster rebuilds")
parser.add_argument(
"--fast_build",
"-f",
default=False,
action="store_true",
help=
"Skip compiling some kernels to accelerate compilation -- for development only"
)
parser.add_argument(
"--job_count",
"-j",
const=cpu_count(),
nargs="?",
help=
"Number of parallel jobs for compilation (default: number of CPU cores)"
)
parser.add_argument(
"--cpp_only",
"-l",
action="store_true",
help="Only build the C++ library without Python dependencies")
parser.add_argument(
"--extra-cmake-vars",
"-D",
action="append",
help=
"Extra cmake variable definitions which can be specified multiple times. Example: -D \"key1=value1\" -D \"key2=value2\"",
default=[])
parser.add_argument(
"--extra-make-targets",
help="Additional make targets to build. Example: \"target_1 target_2\"",
nargs="+",
default=[])
parser.add_argument(
"--trt_root",
default="/usr/local/tensorrt",
help="Directory containing TensorRT headers and libraries")
parser.add_argument("--nccl_root",
help="Directory containing NCCL headers and libraries")
parser.add_argument("--nixl_root",
help="Directory containing NIXL headers and libraries")
parser.add_argument(
"--internal-cutlass-kernels-root",
default="",
help=
"Directory containing internal_cutlass_kernels sources. If specified, the internal_cutlass_kernels and NVRTC wrapper libraries will be built from source."
)
parser.add_argument(
"--build_dir",
type=Path,
help=
"Directory where C++ sources are built (default: cpp/build or cpp/build_<build_type>)"
)
parser.add_argument(
"--dist_dir",
type=Path,
help="Directory where Python wheels are built (default: build/)")
parser.add_argument(
"--skip_building_wheel",
"-s",
action="store_true",
help=
"Skip building the *.whl files (they are only needed for distribution)")
parser.add_argument(
"--linking_install_binary",
action="store_true",
help=
"Install the built binary by creating symbolic links instead of copying files"
)
parser.add_argument("--binding_type",
choices=["pybind", "nanobind"],
default="pybind",
help="Which binding type to build: pybind or nanobind")
parser.add_argument("--benchmarks",
action="store_true",
help="Build the benchmarks for the C++ runtime")
parser.add_argument("--micro_benchmarks",
action="store_true",
help="Build the micro benchmarks for C++ components")
parser.add_argument("--nvtx",
action="store_true",
help="Enable NVTX profiling features")
parser.add_argument("--skip-stubs",
action="store_true",
help="Skip building Python type stubs")
parser.add_argument("--generate_fmha",
action="store_true",
help="Generate the FMHA CUDA files")
parser.add_argument(
"--no-venv",
action="store_true",
help=
"Use the current Python interpreter without creating a virtual environment"
)
parser.add_argument(
"--nvrtc_dynamic_linking",
action="store_true",
help="Link against dynamic NVRTC libraries instead of static ones")
if __name__ == "__main__":
parser = ArgumentParser()
add_arguments(parser)
args = parser.parse_args()
main(**vars(args))