TensorRT-LLMs/cpp/tensorrt_llm/thop/fp4Quantize.cpp
hlu1 8207d5fd39
[None] [feat] Add model gpt-oss (#6645)
Signed-off-by: Hao Lu <14827759+hlu1@users.noreply.github.com>
2025-08-07 03:04:18 -04:00

170 lines
6.1 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/thop/fp4Quantize.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/kernels/quantization.h"
#include "tensorrt_llm/thop/thUtils.h"
#include <ATen/cuda/EmptyTensor.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <optional>
namespace torch_ext
{
// self: [M, K], fp16/bf16/fp8_quantized
// globalScale: [1] float, = (448 * 6) / self.abs().max(). Not used when sfUseUE8M0 is true.
// nvfp4: sfVecSize = 16, sfUseUE8M0 = false
// mxfp4: sfVecSize = 32, sfUseUE8M0 = true
// alignment: sfVecSize
// isSfSwizzledLayout: bool, if true, the scale factors are stored in swizzled layout, otherwise in linear layout.
// See QuantizationSFLayout enum for more details about the two layouts.
// returns self_fp4, self_block_scale_factors
// self_fp4: [M, K / 2], FLOAT4_E2M1X2
// self_block_scale_factors: ceil(M / 128) * 128 * ceil(K / sfVecSize / 4) * 4, SF_DTYPE (UE4M3 or UE8M0)
std::tuple<at::Tensor, at::Tensor> fp4_quantize(at::Tensor const& self, std::optional<at::Tensor> const& globalScale,
int64_t sfVecSize, bool sfUseUE8M0, bool isSfSwizzledLayout)
{
CHECK_TH_CUDA(self);
CHECK_CONTIGUOUS(self);
if (sfUseUE8M0)
{
TORCH_CHECK(sfVecSize == 32, "sfVecSize can only be 32, when sfUseUE8M0 is true");
}
else
{
TORCH_CHECK(globalScale.has_value(), "globalScale is required when sfUseUE8M0 is false");
CHECK_INPUT(globalScale.value(), torch::kFloat32);
TORCH_CHECK(sfVecSize == 16, "sfVecSize can only be 16, when sfUseUE8M0 is false");
}
float* globalScalePtr{nullptr};
if (globalScale.has_value())
{
globalScalePtr = globalScale->data_ptr<float>();
}
auto const& inputShape = self.sizes();
auto const& rank = inputShape.size();
TORCH_CHECK(rank >= 2, "Input should be >=2D tensor.");
int64_t m = 1;
for (size_t i = 0; i < rank - 1; i++)
{
m *= inputShape[i];
}
auto const k = inputShape[rank - 1];
TORCH_CHECK(k % sfVecSize == 0);
std::vector<int64_t> outputShape(inputShape.begin(), inputShape.end());
outputShape[rank - 1] = k / 2;
at::Tensor valueE2M1 = at::detail::empty_cuda(outputShape, FLOAT4_E2M1X2, self.device(), /* stride */ std::nullopt);
int64_t SFSize = isSfSwizzledLayout ? tensorrt_llm::computeSwizzledLayoutSFSize(m, k / sfVecSize)
: tensorrt_llm::computeLinearLayoutSFSize(m, k / sfVecSize);
at::Tensor scaleFP8SF
= at::detail::empty_cuda({SFSize}, SF_DTYPE, self.device(), /* stride */ std::nullopt); // 1D tensor
const thread_local int mMultiProcessorCount = tensorrt_llm::common::getMultiProcessorCount();
auto const layout = isSfSwizzledLayout ? tensorrt_llm::QuantizationSFLayout::SWIZZLED
: tensorrt_llm::QuantizationSFLayout::LINEAR;
#define LAUNCH_FP4_QUANTIZE_KERNEL(T, SF_VEC_SIZE) \
tensorrt_llm::kernels::invokeFP4Quantization<T, SF_VEC_SIZE>(1, m, k, reinterpret_cast<T*>(self.data_ptr()), \
globalScalePtr, reinterpret_cast<int64_t*>(valueE2M1.data_ptr()), \
reinterpret_cast<int32_t*>(scaleFP8SF.data_ptr()), sfUseUE8M0, layout, mMultiProcessorCount, \
at::cuda::getCurrentCUDAStream(self.get_device()));
if (sfUseUE8M0)
{
if (self.scalar_type() == at::ScalarType::Half)
{
LAUNCH_FP4_QUANTIZE_KERNEL(half, 32)
}
else if (self.scalar_type() == at::ScalarType::BFloat16)
{
#ifdef ENABLE_BF16
LAUNCH_FP4_QUANTIZE_KERNEL(__nv_bfloat16, 32)
#else
C10_THROW_ERROR(NotImplementedError, "BFloat16 must be enabled to quantize an bf16 tensor to fp4.");
#endif
}
else if (self.scalar_type() == at::ScalarType::Float8_e4m3fn)
{
#ifdef ENABLE_FP8
LAUNCH_FP4_QUANTIZE_KERNEL(__nv_fp8_e4m3, 32)
#else
C10_THROW_ERROR(NotImplementedError, "FP8 must be enabled to quantize an fp8 tensor to fp4.");
#endif
}
else
{
C10_THROW_ERROR(NotImplementedError, "fp4_quantize only supports input tensor with dtypes fp16/bf16/e4m3.");
}
}
else
{
if (self.scalar_type() == at::ScalarType::Half)
{
LAUNCH_FP4_QUANTIZE_KERNEL(half, 16)
}
else if (self.scalar_type() == at::ScalarType::BFloat16)
{
#ifdef ENABLE_BF16
LAUNCH_FP4_QUANTIZE_KERNEL(__nv_bfloat16, 16)
#else
C10_THROW_ERROR(NotImplementedError, "BFloat16 must be enabled to quantize an bf16 tensor to fp4.");
#endif
}
else if (self.scalar_type() == at::ScalarType::Float8_e4m3fn)
{
#ifdef ENABLE_FP8
LAUNCH_FP4_QUANTIZE_KERNEL(__nv_fp8_e4m3, 16)
#else
C10_THROW_ERROR(NotImplementedError, "FP8 must be enabled to quantize an fp8 tensor to fp4.");
#endif
}
else
{
C10_THROW_ERROR(NotImplementedError, "fp4_quantize only supports input tensor with dtypes fp16/bf16/e4m3.");
}
}
#undef LAUNCH_FP4_QUANTIZE_KERNEL
return {valueE2M1, scaleFP8SF};
}
} // namespace torch_ext
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def(
"fp4_quantize(Tensor input, Tensor? globalScale, int sfVecSize, bool sfUseUE8M0=False, bool "
"isSfSwizzledLayout=True) "
"-> (Tensor, Tensor)");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("fp4_quantize", TORCH_FN(torch_ext::fp4_quantize));
}