TensorRT-LLMs/cpp/tensorrt_llm/kernels/trtllmGenKernels/fmha/fmhaRunner.cpp
zhhuang-nv 94e6167879
optimize cudaMemGetInfo for TllmGenFmhaRunner (#3907)
Signed-off-by: Zhen Huang <145532724+zhhuang-nv@users.noreply.github.com>
2025-04-29 14:17:07 +08:00

79 lines
3.0 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fmhaRunner.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/kernels/contextFusedMultiHeadAttention/fused_multihead_attention_common.h"
#include "tensorrt_llm/kernels/multiHeadAttentionCommon.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace tensorrt_llm
{
namespace kernels
{
////////////////////////////////////////////////////////////////////////////////////////////////////
TllmGenFmhaRunner::TllmGenFmhaRunner(Data_type dtypeQ, Data_type dtypeKv, Data_type dtypeOut)
: mSM(tensorrt_llm::common::getSMVersion())
, mDtypeQ(dtypeQ)
, mDtypeKv(dtypeKv)
, mDtypeOut(dtypeOut)
{
TLLM_CHECK_WITH_INFO(mSM == kSM_100, "Unsupported architecture");
TLLM_CHECK_WITH_INFO(
mDtypeQ == DATA_TYPE_E4M3 || mDtypeQ == DATA_TYPE_FP16 || mDtypeQ == DATA_TYPE_BF16, "Unsupported Q data type");
TLLM_CHECK_WITH_INFO(mDtypeKv == DATA_TYPE_E4M3 || mDtypeKv == DATA_TYPE_FP16 || mDtypeKv == DATA_TYPE_BF16,
"Unsupported Kv data type");
TLLM_CHECK_WITH_INFO(mDtypeOut == DATA_TYPE_E2M1 || mDtypeOut == DATA_TYPE_E4M3 || mDtypeOut == DATA_TYPE_FP16
|| mDtypeOut == DATA_TYPE_BF16,
"Unsupported Output data type");
auto const [freeMemory, totalMemory] = tensorrt_llm::common::getDeviceMemoryInfo(false);
mTotalDeviceMemory = totalMemory;
TLLM_CHECK_WITH_INFO(mTotalDeviceMemory > 0, "Total device memory is invalid");
mKernel = getTllmFmhaKernels(mDtypeQ, mDtypeKv, mDtypeOut, mSM);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
void TllmGenFmhaRunner::run(TllmGenFmhaRunnerParams const& runnerParams)
{
mKernel->run(runnerParams);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
bool TllmGenFmhaRunner::isSupported(TllmGenFmhaRunnerParams const& runnerParams) const
{
return mKernel->checkIfKernelExist(runnerParams).first;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
std::pair<bool, std::string> TllmGenFmhaRunner::isSupportedWithInfo(TllmGenFmhaRunnerParams const& runnerParams) const
{
return mKernel->checkIfKernelExist(runnerParams);
}
size_t TllmGenFmhaRunner::getTotalDeviceMemory() const
{
return mTotalDeviceMemory;
}
} // namespace kernels
} // namespace tensorrt_llm