TensorRT-LLMs/cpp/tensorrt_llm/kernels/decoderMaskedMultiheadAttention/tensorMapUtils.cpp
2024-11-12 15:27:49 +08:00

139 lines
5.7 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/tensorMapUtils.h"
#include "tensorrt_llm/kernels/kvCacheUtils.h"
#include <cstdint>
#include <type_traits>
namespace tensorrt_llm::kernels
{
namespace
{
using tensorrt_llm::common::CUDADriverWrapper;
uint32_t getElemBytes(CUtensorMapDataType_enum dataType)
{
switch (dataType)
{
case CU_TENSOR_MAP_DATA_TYPE_UINT8: return 1;
case CU_TENSOR_MAP_DATA_TYPE_UINT16: return 2;
case CU_TENSOR_MAP_DATA_TYPE_UINT32: return 4;
case CU_TENSOR_MAP_DATA_TYPE_INT32: return 4;
case CU_TENSOR_MAP_DATA_TYPE_UINT64: return 8;
case CU_TENSOR_MAP_DATA_TYPE_INT64: return 8;
case CU_TENSOR_MAP_DATA_TYPE_FLOAT16: return 2;
case CU_TENSOR_MAP_DATA_TYPE_FLOAT32: return 4;
case CU_TENSOR_MAP_DATA_TYPE_FLOAT64: return 8;
case CU_TENSOR_MAP_DATA_TYPE_BFLOAT16: return 2;
case CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ: return 4;
case CU_TENSOR_MAP_DATA_TYPE_TFLOAT32: return 4;
case CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ: return 4;
}
throw std::runtime_error("unsupported data type");
}
CUtensorMap makeTensorMapForPagedKVCache(std::shared_ptr<CUDADriverWrapper> const& driver, void const* addr,
CUtensorMapDataType_enum dataType, uint32_t headElems, uint32_t nbKHeads, uint32_t tokensPerPage,
uint32_t nbTokensPerTile = 64)
{
CUtensorMap tensorMap{};
uint32_t elemBytes = getElemBytes(dataType);
uint64_t const globalDims[] = {headElems, tokensPerPage, nbKHeads, 1U << 31};
uint32_t const headBytes = elemBytes * headElems;
uint64_t const globalStrides[] = {headBytes, headBytes * tokensPerPage, headBytes * tokensPerPage * nbKHeads};
TLLM_CHECK(headElems <= 256);
uint32_t const paddedHeadElems = headElems <= 64 ? 64 : (headElems <= 128 ? 128 : 256);
uint32_t const partElems = std::min(elemBytes * paddedHeadElems, 128U) / elemBytes;
uint32_t const boxDims[] = {partElems, std::min(tokensPerPage, nbTokensPerTile), 1, 1};
uint32_t const elemStrides[] = {1, 1, 1, 1};
auto const swizzle = [&]
{
switch (partElems)
{
case 128: return CU_TENSOR_MAP_SWIZZLE_128B;
case 64: return CU_TENSOR_MAP_SWIZZLE_64B;
default: TLLM_THROW("unsupported cache head size");
}
}();
TLLM_CU_CHECK(driver->cuTensorMapEncodeTiled(&tensorMap, dataType, 4, const_cast<void*>(addr), globalDims,
globalStrides, boxDims, elemStrides, CU_TENSOR_MAP_INTERLEAVE_NONE, swizzle, CU_TENSOR_MAP_L2_PROMOTION_NONE,
CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE));
return tensorMap;
}
CUtensorMap makeTensorMapForContiguousKVCache(std::shared_ptr<CUDADriverWrapper> const& driver, void const* addr,
CUtensorMapDataType_enum dataType, uint32_t headElems, uint32_t nbKHeads, uint32_t maxCacheLen, uint32_t beamWidth,
uint32_t batchSize, uint32_t nbTokensPerTile = 64)
{
CUtensorMap tensorMap{};
uint64_t const globalDims[] = {headElems, maxCacheLen, nbKHeads, 2 * beamWidth * batchSize};
uint32_t elemBytes = getElemBytes(dataType);
uint32_t const headBytes = elemBytes * headElems;
uint64_t const globalStrides[] = {headBytes, headBytes * maxCacheLen, headBytes * maxCacheLen * nbKHeads};
TLLM_CHECK(headElems <= 256);
uint32_t const paddedHeadElems = headElems <= 64 ? 64 : (headElems <= 128 ? 128 : 256);
uint32_t const partElems = std::min(elemBytes * paddedHeadElems, 128U) / elemBytes;
uint32_t const boxDims[] = {partElems, nbTokensPerTile, 1, 1};
uint32_t const elemStrides[] = {1, 1, 1, 1};
auto const swizzle = [&]
{
switch (partElems)
{
case 128: return CU_TENSOR_MAP_SWIZZLE_128B;
case 64: return CU_TENSOR_MAP_SWIZZLE_64B;
default: TLLM_THROW("unsupported cache head size");
}
}();
TLLM_CU_CHECK(driver->cuTensorMapEncodeTiled(&tensorMap, dataType, 4, const_cast<void*>(addr), globalDims,
globalStrides, boxDims, elemStrides, CU_TENSOR_MAP_INTERLEAVE_NONE, swizzle, CU_TENSOR_MAP_L2_PROMOTION_NONE,
CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE));
return tensorMap;
}
} // namespace
template <typename KVCacheBuffer>
CUtensorMap makeTensorMapForKVCache(
std::shared_ptr<CUDADriverWrapper> const& driver, XQAParams const& xqaParams, KVCacheBuffer const& kv_cache_buffer)
{
if constexpr (std::is_same_v<KVCacheBuffer, KVBlockArray>)
{
return makeTensorMapForPagedKVCache(driver, kv_cache_buffer.mPrimaryPoolPtr, CU_TENSOR_MAP_DATA_TYPE_UINT8,
xqaParams.head_size, xqaParams.num_kv_heads, xqaParams.tokens_per_block);
}
else
{
static_assert(std::is_same_v<KVCacheBuffer, KVLinearBuffer>);
return makeTensorMapForContiguousKVCache(driver, kv_cache_buffer.data, CU_TENSOR_MAP_DATA_TYPE_UINT8,
xqaParams.head_size, xqaParams.num_kv_heads, xqaParams.max_attention_window_size, xqaParams.beam_width,
xqaParams.batch_size);
}
}
template CUtensorMap makeTensorMapForKVCache(
std::shared_ptr<CUDADriverWrapper> const&, XQAParams const&, KVBlockArray const&);
template CUtensorMap makeTensorMapForKVCache(
std::shared_ptr<CUDADriverWrapper> const&, XQAParams const&, KVLinearBuffer const&);
} // namespace tensorrt_llm::kernels