TensorRT-LLMs/tensorrt_llm/models/generation_mixin.py
2024-11-05 16:27:06 +08:00

857 lines
37 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from collections import OrderedDict
from typing import List, Optional
import tensorrt as trt
from ..bindings import KVCacheType
from ..functional import Tensor
from ..layers import SpecDecodingParams
from ..mapping import Mapping
from ..plugin import current_all_reduce_helper
class GenerationMixin:
@staticmethod
def has_ctx_gen_opt_profiles(
use_gpt_attention_plugin: bool = False,
use_gemm_plugin: bool = False,
use_mamba_conv1d_plugin: bool = False,
remove_input_padding: bool = False,
paged_state: bool = False,
kv_cache_type: KVCacheType = KVCacheType.CONTINUOUS) -> bool:
res = False
if not use_gpt_attention_plugin or not use_gemm_plugin:
use_in_flight_batching = False
# Refer to modelConfig.h: supportsInflightBatching(), this should be consistent its implementation.
# We skip check transformer or rnn arch for simplification.
if remove_input_padding and use_gpt_attention_plugin:
use_in_flight_batching = kv_cache_type in [
KVCacheType.PAGED, KVCacheType.DISABLED
]
elif remove_input_padding and use_mamba_conv1d_plugin:
use_in_flight_batching = paged_state == True
res = not use_in_flight_batching
return res
@staticmethod
def default_range(max_range, offset=0, min_range=1, opt_offset=0):
result = [
min_range, (max_range + min_range + opt_offset) // 2, max_range
]
return [elem + offset for elem in result]
@staticmethod
def split_num_tokens_range(max_num_tokens):
split_point = [64, 128, 256, 512, 1024]
num_tokens_ranges = []
for i, p in enumerate(split_point):
if i == 0 and max_num_tokens <= p:
return [1, max_num_tokens, max_num_tokens]
elif max_num_tokens <= p:
num_tokens_ranges.append(
[split_point[i - 1], max_num_tokens, max_num_tokens])
return num_tokens_ranges
elif i == 0 and max_num_tokens > p:
num_tokens_ranges = [[1, 64, 64]]
else:
num_tokens_ranges.append(
[split_point[i - 1], split_point[i], split_point[i]])
num_tokens_ranges.append(
[split_point[-1], max_num_tokens, max_num_tokens])
return num_tokens_ranges
@staticmethod
def get_profiles_ranges(
*,
max_batch_size,
max_beam_width,
max_input_len,
max_num_tokens,
max_draft_len,
opt_batch_size,
opt_num_tokens,
enable_ctx_gen_opt_profiles,
multiple_profiles,
kv_cache_type: KVCacheType = KVCacheType.CONTINUOUS):
default_range = GenerationMixin.default_range
if opt_batch_size:
bb_range_cxt = [1, opt_batch_size, max_batch_size]
bb_range_gen = [
1, opt_batch_size * max_beam_width,
max_batch_size * max_beam_width
]
else:
bb_range_cxt = default_range(max_batch_size)
bb_range_gen = default_range(max_batch_size * max_beam_width)
tokens_per_engine_step = max_draft_len + 1
tokens_per_engine_step_range = [
1, tokens_per_engine_step, tokens_per_engine_step
]
bbd_range_ctx = [
bb_range_cxt[i] * (tokens_per_engine_step if i != 0 else 1)
for i in range(len(bb_range_cxt))
]
bbd_range_gen = [
bb_range_gen[i] * (tokens_per_engine_step if i != 0 else 1)
for i in range(len(bb_range_gen))
]
inlen_range_cxt = default_range(max_input_len)
inlen_range_gen = [1, 1, tokens_per_engine_step]
if enable_ctx_gen_opt_profiles:
num_profiles = 2
bb_range = [bb_range_cxt, bb_range_gen]
bbd_range = [bbd_range_ctx, bbd_range_gen]
inlen_range = [inlen_range_cxt, inlen_range_gen]
position_ids_inlen_range = [inlen_range_cxt, [1, 1, 1]]
num_tokens_range_ctx = default_range(max_batch_size * max_input_len)
# Draft tokens cannot be combined with beam search
num_tokens_range_gen = default_range(
max_batch_size * max(tokens_per_engine_step, max_beam_width))
num_tokens_range = [num_tokens_range_ctx, num_tokens_range_gen]
# Only keep context range when kv cache is disabled.
if kv_cache_type == KVCacheType.DISABLED:
num_profiles = 1
bb_range = [bb_range[0]]
bbd_range = [bbd_range[0]]
inlen_range = [inlen_range[0]]
position_ids_inlen_range = [position_ids_inlen_range[0]]
num_tokens_range_ctx = [num_tokens_range_ctx[0]]
# Draft tokens cannot be combined with beam search
num_tokens_range_gen = [num_tokens_range_gen[0]]
num_tokens_range = [num_tokens_range[0]]
else:
if multiple_profiles:
num_tokens_range = GenerationMixin.split_num_tokens_range(
max_num_tokens)
else:
if opt_num_tokens is None:
opt_num_tokens = min(max_num_tokens,
max_batch_size * max_beam_width)
num_tokens_range = [[1, opt_num_tokens, max_num_tokens]]
num_profiles = len(num_tokens_range)
bb_range = [bb_range_gen] * num_profiles
bbd_range = [bbd_range_gen] * num_profiles
inlen_range = [[1, 1, max_input_len]] * num_profiles
position_ids_inlen_range = [[1, 1, max_input_len]] * num_profiles
tokens_per_engine_step_range = [tokens_per_engine_step_range
] * num_profiles
position_ids_num_tokens_range = num_tokens_range
# If max_draft_len != 0, the input_ids may include draft tokens. And the length of position_ids may be not the same as input_ids.
# In extreme cases, input_ids may contain (max_draft_token + 1) * N, and the actual position_ids value is only 1 * N.
# Therefore, we need to adjust the min value in the ranges of position_ids.
if max_draft_len != 0:
position_ids_num_tokens_range = list(
map(
lambda x:
[math.ceil(x[0] / (max_draft_len + 1)), x[1], x[2]],
num_tokens_range))
ranges = {
'bb_range': bb_range,
'bbd_range': bbd_range,
'inlen_range': inlen_range,
'position_ids_inlen_range': position_ids_inlen_range,
'num_tokens_range': num_tokens_range,
'tokens_per_engine_step_range': tokens_per_engine_step_range,
'position_ids_num_tokens_range': position_ids_num_tokens_range,
}
return num_profiles, ranges
def prepare_attention_inputs(
self,
*,
max_batch_size,
max_beam_width,
max_input_len,
max_seq_len,
num_kv_heads,
head_size,
num_layers,
kv_dtype,
kv_cache_type: KVCacheType,
num_profiles=1,
enable_ctx_gen_opt_profiles=False,
remove_input_padding=False,
use_gpt_attention_plugin=False,
tokens_per_block=64,
mapping=Mapping(),
streamingllm=False,
attn_layer_idx=None,
opt_batch_size=None,
num_kv_heads_per_layer: Optional[List[int]] = None):
if attn_layer_idx is not None and num_kv_heads_per_layer is not None:
assert len(attn_layer_idx) == len(num_kv_heads_per_layer), (
f"Expected len(attn_layer_idx) ({len(attn_layer_idx)})"
f" == len(num_kv_heads_per_layer) ({len(num_kv_heads_per_layer)})"
)
default_range = GenerationMixin.default_range
if opt_batch_size:
bb_range_cxt = [1, opt_batch_size, max_batch_size]
bb_range_gen = [
1, opt_batch_size * max_beam_width,
max_batch_size * max_beam_width
]
else:
bb_range_cxt = default_range(max_batch_size)
bb_range_gen = default_range(max_batch_size * max_beam_width)
_bs_range = default_range(max_batch_size)
_beam_width_range = default_range(max_beam_width)
_max_len_range = default_range(max_seq_len)
_mask_len_ctx = default_range(max_input_len)
_kv_cache_range_ctx = [0, 0, 0]
_kv_cache_range_gen = default_range(max_seq_len, -1)
if kv_cache_type == KVCacheType.DISABLED:
_kv_cache_range = default_range(max_seq_len)
else:
kv_max_seq_len = max_seq_len
if streamingllm:
# add the max bubble length
kv_max_seq_len += tokens_per_block - 1
if max_beam_width > 1:
# support cyclic kv cache cases that use one more block
kv_max_seq_len += tokens_per_block
_kv_cache_range = default_range(kv_max_seq_len)
if enable_ctx_gen_opt_profiles:
if kv_cache_type != KVCacheType.DISABLED:
assert num_profiles == 2
bb_range = [bb_range_cxt, bb_range_gen]
mask_len_range = [_mask_len_ctx, _max_len_range]
if use_gpt_attention_plugin:
kv_cache_range = [_kv_cache_range, _kv_cache_range]
else:
kv_cache_range = [_kv_cache_range_ctx, _kv_cache_range_gen]
else:
assert num_profiles == 1
bb_range = [bb_range_cxt]
mask_len_range = [_mask_len_ctx]
if use_gpt_attention_plugin:
kv_cache_range = [_kv_cache_range]
else:
kv_cache_range = [_kv_cache_range_ctx]
else:
bb_range = [bb_range_gen] * num_profiles
mask_len_range = [_max_len_range] * num_profiles
kv_cache_range = [_kv_cache_range] * num_profiles
bs_range = [_bs_range] * num_profiles
beam_width_range = [_beam_width_range] * num_profiles
max_len_range = [_max_len_range] * num_profiles
num_kv_heads = (num_kv_heads + mapping.tp_size - 1) // mapping.tp_size
if num_kv_heads_per_layer is not None:
num_kv_heads_per_layer = [
(nheads + mapping.tp_size - 1) // mapping.tp_size
for nheads in num_kv_heads_per_layer
]
layers_range = mapping.pp_layers(num_layers)
if attn_layer_idx is None:
attn_layer_idx = [i for i in range(num_layers)]
# layer indices of attention layers local to the current pp rank
local_attn_layers = [i for i in layers_range if i in attn_layer_idx]
# number of attention layers local to previous pp ranks
num_attn_layers_lower_ranks = attn_layer_idx.index(local_attn_layers[0])
past_key_value = []
kv_cache_block_offsets = None
host_kv_cache_block_offsets = None
host_kv_cache_pool_pointers = None
host_kv_cache_pool_mapping = None
if kv_cache_type == KVCacheType.DISABLED:
for i in layers_range:
past_key_value.append(None)
else:
if kv_cache_type != KVCacheType.PAGED:
for layer_idx in layers_range:
if layer_idx not in local_attn_layers:
# not an attention layer ==> give it None pkv input
past_key_value.append(None)
continue
attn_idx = local_attn_layers.index(layer_idx)
if num_kv_heads_per_layer is not None:
heads_dim_name = f"num_heads_{layer_idx}"
kv_heads = num_kv_heads_per_layer[
num_attn_layers_lower_ranks + attn_idx]
else:
heads_dim_name = "num_heads"
kv_heads = num_kv_heads
kv_dim_range = OrderedDict([
('batch_size_beam_width', bb_range),
('kv', [2] * num_profiles),
(heads_dim_name, [kv_heads] * num_profiles),
('past_key_len', kv_cache_range),
('head_size', [head_size] * num_profiles),
])
kv = Tensor(name=f'past_key_value_{layer_idx}',
dtype=kv_dtype,
shape=[-1, 2, kv_heads, -1, head_size],
dim_range=kv_dim_range)
past_key_value.append(kv)
else:
if enable_ctx_gen_opt_profiles:
max_blocks_per_seq_range = [
[
math.ceil(kv_cache_range[0][0] / tokens_per_block),
math.ceil(kv_cache_range[0][1] / tokens_per_block),
math.ceil(kv_cache_range[0][2] / tokens_per_block)
],
[
math.ceil(kv_cache_range[1][0] / tokens_per_block),
math.ceil(kv_cache_range[1][1] / tokens_per_block),
math.ceil(kv_cache_range[1][2] / tokens_per_block)
]
]
else:
max_blocks_per_seq_range = [[
math.ceil(kv_cache_range[0][0] / tokens_per_block),
math.ceil(kv_cache_range[0][1] / tokens_per_block),
math.ceil(kv_cache_range[0][2] / tokens_per_block)
]] * num_profiles
num_kv_cache_pools = 1 if num_kv_heads_per_layer is None else len(
set(num_kv_heads_per_layer[num_attn_layers_lower_ranks:
num_attn_layers_lower_ranks +
len(local_attn_layers)]))
kv_cache_block_offsets = Tensor(
name=f'kv_cache_block_offsets',
dtype=trt.int32,
shape=[num_kv_cache_pools, -1, 2, -1],
dim_range=OrderedDict([
('num_kv_cache_pools',
[num_kv_cache_pools] * num_profiles),
('batch_size_beam_width', bb_range),
('kv', [2] * num_profiles),
('max_blocks_per_seq', max_blocks_per_seq_range),
]))
host_kv_cache_block_offsets = Tensor(
name=f'host_kv_cache_block_offsets',
dtype=trt.int32,
shape=[num_kv_cache_pools, -1, 2, -1],
dim_range=OrderedDict([
('num_kv_cache_pools',
[num_kv_cache_pools] * num_profiles),
('batch_size_beam_width', bb_range),
('kv', [2] * num_profiles),
('max_blocks_per_seq', max_blocks_per_seq_range),
]))
host_kv_cache_pool_pointers = Tensor(
name=f'host_kv_cache_pool_pointers',
dtype=trt.int64,
shape=[num_kv_cache_pools, 2],
dim_range=OrderedDict([
('num_pools_layers',
[num_kv_cache_pools] * num_profiles),
('num_pools_kv', [2] * num_profiles),
]))
host_kv_cache_pool_mapping = Tensor(
name=f'host_kv_cache_pool_mapping',
dtype=trt.int32,
shape=[len(local_attn_layers)],
dim_range=OrderedDict([
('pools_mapping',
[len(local_attn_layers)] * num_profiles),
]))
for i in layers_range:
past_key_value.append(None)
assert len(past_key_value) == len(layers_range)
sequence_length = None
context_lengths = None
host_context_lengths = None
host_past_key_value_lengths = None
host_max_attention_window_sizes = None
host_sink_token_length = None
attention_mask = None
cache_indirection = None
host_request_types = None
runtime_perf_knobs = None
context_progress = None
if use_gpt_attention_plugin:
if kv_cache_type != KVCacheType.DISABLED:
sequence_length = Tensor(
name='sequence_length',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width', bb_range)
]),
)
host_request_types = Tensor(
name='host_request_types',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width', bb_range)]),
)
if kv_cache_type != KVCacheType.DISABLED:
host_past_key_value_lengths = Tensor(
name='host_past_key_value_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width', bb_range)
]),
)
context_lengths = Tensor(
name='context_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width', bb_range)]),
)
runtime_perf_knobs = Tensor(name='host_runtime_perf_knobs',
dtype=trt.int64,
shape=[16],
dim_range=OrderedDict([
('perf_knob_size',
[16] * num_profiles)
]))
context_progress = Tensor(name='host_context_progress',
dtype=trt.int64,
shape=[1],
dim_range=OrderedDict([
('context_progress_size',
[1] * num_profiles)
]))
else:
attention_mask = Tensor(
name='attention_mask',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('mask_len', mask_len_range),
]),
)
if use_gpt_attention_plugin and remove_input_padding:
host_context_lengths = Tensor(
name='host_context_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width', bb_range)]),
)
if use_gpt_attention_plugin:
# TODO(rkobus): change shape to [1]
host_max_attention_window_sizes = Tensor(
name=f'host_max_attention_window_sizes',
dtype=trt.int32,
shape=[len(local_attn_layers)],
dim_range=OrderedDict([
('num_layers', [len(local_attn_layers)] * num_profiles)
]))
host_sink_token_length = Tensor(name='host_sink_token_length',
dtype=trt.int32,
shape=[1],
dim_range=OrderedDict([
('scalar', [1] * num_profiles)
]))
if kv_cache_type != KVCacheType.DISABLED:
cache_indirection = Tensor(
name='cache_indirection',
dtype=trt.int32,
shape=[-1, -1, -1],
dim_range=OrderedDict([
('batch_size_cache', bs_range),
('beam_width', beam_width_range),
('max_seq_len', max_len_range),
]),
)
return {
'attention_mask': attention_mask,
'sequence_length': sequence_length,
'host_past_key_value_lengths': host_past_key_value_lengths,
'host_max_attention_window_sizes': host_max_attention_window_sizes,
'host_sink_token_length': host_sink_token_length,
'past_key_value': past_key_value,
'cache_indirection': cache_indirection,
'kv_cache_block_offsets': kv_cache_block_offsets,
'host_kv_cache_block_offsets': host_kv_cache_block_offsets,
'host_kv_cache_pool_pointers': host_kv_cache_pool_pointers,
'host_kv_cache_pool_mapping': host_kv_cache_pool_mapping,
'context_lengths': context_lengths,
'host_context_lengths': host_context_lengths,
'host_request_types': host_request_types,
'host_runtime_perf_knobs': runtime_perf_knobs,
'host_context_progress': context_progress,
}
def prepare_basic_inputs(
self,
*,
max_batch_size,
max_beam_width,
max_input_len,
max_seq_len,
max_num_tokens,
hidden_size,
num_kv_heads,
head_size,
num_layers,
kv_dtype,
kv_cache_type: KVCacheType,
remove_input_padding=False,
use_gpt_attention_plugin=False,
use_gemm_plugin=False,
tokens_per_block=64,
gather_context_logits=False,
gather_generation_logits=False,
dtype=None,
num_heads=None,
mapping=Mapping(),
opt_num_tokens=None,
prompt_embedding_table_size: int = 0,
position_encoding_2d=False,
use_lora_plugin: bool = False,
lora_target_modules: List[str] = None,
speculative_decoding_draft_tokens_external: bool = False,
spec_decoding_is_generation_length_variable: bool = False,
max_draft_len=0,
multiple_profiles: bool = False,
streamingllm: bool = False,
opt_batch_size=None,
pp_reduce_scatter: bool = False):
enable_ctx_gen_opt_profiles = GenerationMixin.has_ctx_gen_opt_profiles(
use_gpt_attention_plugin=use_gpt_attention_plugin,
use_gemm_plugin=use_gemm_plugin,
remove_input_padding=remove_input_padding,
kv_cache_type=kv_cache_type)
num_profiles, ranges = GenerationMixin.get_profiles_ranges(
max_batch_size=max_batch_size,
max_beam_width=max_beam_width,
max_input_len=max_input_len,
max_num_tokens=max_num_tokens,
max_draft_len=max_draft_len,
opt_batch_size=opt_batch_size,
opt_num_tokens=opt_num_tokens,
enable_ctx_gen_opt_profiles=enable_ctx_gen_opt_profiles,
multiple_profiles=multiple_profiles,
kv_cache_type=kv_cache_type)
bb_range = ranges['bb_range']
bbd_range = ranges['bbd_range']
inlen_range = ranges['inlen_range']
num_tokens_range = ranges['num_tokens_range']
position_ids_inlen_range = ranges['position_ids_inlen_range']
tokens_per_engine_step_range = ranges['tokens_per_engine_step_range']
position_ids_num_tokens_range = ranges['position_ids_num_tokens_range']
input_ids = None
position_ids = None
hidden_states = None
if remove_input_padding:
if mapping.is_first_pp_rank():
input_ids = Tensor(name='input_ids',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('num_tokens', num_tokens_range),
]))
if position_encoding_2d:
position_ids = Tensor(
name='position_ids',
dtype=trt.int32,
shape=[2, -1],
dim_range=OrderedDict([
('2', [2] * num_profiles),
('position_ids_num_tokens_range',
position_ids_num_tokens_range),
]),
)
else:
position_ids = Tensor(
name='position_ids',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('position_ids_num_tokens_range',
position_ids_num_tokens_range),
]),
)
else:
assert dtype is not None
assert num_heads is not None
pp_hidden_size = hidden_size // mapping.tp_size if pp_reduce_scatter else hidden_size
hidden_states = Tensor(
name='hidden_states_input',
dtype=dtype,
shape=[-1, pp_hidden_size],
dim_range=OrderedDict([
('num_tokens', num_tokens_range),
('hidden_size', [pp_hidden_size] * num_profiles),
]),
)
else:
if mapping.is_first_pp_rank():
input_ids = Tensor(name='input_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('input_len', inlen_range),
]))
if position_encoding_2d:
position_ids = Tensor(
name='position_ids',
dtype=trt.int32,
shape=[-1, 2, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('2', [2] * num_profiles),
('position_ids_inlen_range',
position_ids_inlen_range),
]),
)
else:
position_ids = Tensor(
name='position_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('position_ids_inlen_range',
position_ids_inlen_range),
]),
)
else:
assert dtype is not None
assert num_heads is not None
hidden_states = Tensor(
name='hidden_states_input',
dtype=dtype,
shape=[-1, -1, hidden_size],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('input_len', inlen_range),
('hidden_size', [hidden_size] * num_profiles),
]),
)
if mapping.tp_size > 1:
current_all_reduce_helper().set_workspace_tensor(
mapping, num_profiles)
prompt_embedding_table = None
tasks = None
prompt_vocab_size = None
if prompt_embedding_table_size > 0:
_p_embedding_range = [
1, prompt_embedding_table_size // 2, prompt_embedding_table_size
]
p_embedding_range = [_p_embedding_range] * num_profiles
prompt_embedding_table = Tensor(name='prompt_embedding_table',
dtype=dtype,
shape=[-1, hidden_size],
dim_range=OrderedDict([
('prompt_embedding_table_size',
p_embedding_range),
('hidden_size',
[hidden_size] * num_profiles),
]))
if remove_input_padding:
tasks = Tensor(name='tasks',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('input_len_task', num_tokens_range),
]))
else:
tasks = Tensor(name='tasks',
dtype=trt.int32,
shape=[-1, 1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('broadcast_dim', [1] * num_profiles),
]))
prompt_vocab_size = Tensor(name='prompt_vocab_size',
dtype=trt.int32,
shape=[1],
dim_range=OrderedDict([
('size', [1] * num_profiles)
]))
lora_weights_pointers = None
lora_ranks = None
if use_lora_plugin:
lora_weights_pointers = []
lora_ranks = []
layers_range = mapping.pp_layers(num_layers)
for i in layers_range:
lora_weight_pointer_dict = {}
lora_rank_dict = {}
for lora_module in lora_target_modules:
lora_weight_pointer = Tensor(
name=f'{lora_module}_lora_weights_pointers_{i}',
dtype=trt.int64,
shape=[-1, 2],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('in_out', [2] * num_profiles),
]))
lora_weight_pointer_dict.update({
f"{lora_module}_lora_weights_pointers":
lora_weight_pointer
})
lora_rank = Tensor(
name=f'{lora_module}_lora_ranks_{i}',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width',
bb_range)]),
)
lora_rank_dict.update(
{f"{lora_module}_lora_ranks": lora_rank})
lora_weights_pointers.append(lora_weight_pointer_dict)
lora_ranks.append(lora_rank_dict)
last_token_ids = None
if mapping.is_last_pp_rank() and not gather_context_logits:
if not remove_input_padding and max_draft_len > 0:
last_token_ids = Tensor(
name='last_token_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('last_token_ids', tokens_per_engine_step_range),
]),
)
else:
last_token_ids = Tensor(
name='last_token_ids',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('batch_size_last_token_ids', bbd_range),
]),
)
spec_decoding_params = None
# Use positional offsets and packed mask only when not in SpS spec decoding
if speculative_decoding_draft_tokens_external == False and max_draft_len > 0:
tokens_per_engine_step = max_draft_len + 1
# 32 bits packed mask aligned.
num_packed_masks = (tokens_per_engine_step + 32 - 1) // 32
packed_mask_len_range = [[0, 1, num_packed_masks]] * num_profiles
# total number of spec decoding tokens for all sequences (sequence length can be variable).
num_gen_tokens_range = [
GenerationMixin.default_range(
max_batch_size * max_beam_width * tokens_per_engine_step,
min_range=0)
] * num_profiles
bb_range_0 = [[0] + bbr[1:] for bbr in bb_range]
# support variable sequence lengths for medusa.
spec_decoding_generation_lengths = Tensor(
name='spec_decoding_generation_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width_0', bb_range_0)
]),
)
# position offsets that are fixed during the whole session.
# it will be shared among all sequences.
spec_decoding_position_offsets = Tensor(
name='spec_decoding_position_offsets',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_beam_width_0', bb_range_0),
('spec_decoding_position_ids_dim0',
tokens_per_engine_step_range),
]),
)
spec_decoding_packed_mask = Tensor(
name='spec_decoding_packed_mask',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('spec_decoding_packed_mask_dim0', num_gen_tokens_range),
('spec_decoding_packed_mask_dim1', packed_mask_len_range),
]),
)
spec_decoding_params = SpecDecodingParams(
spec_decoding_is_generation_length_variable=
spec_decoding_is_generation_length_variable,
spec_decoding_max_generation_length=tokens_per_engine_step,
spec_decoding_generation_lengths=
spec_decoding_generation_lengths,
spec_decoding_position_offsets=spec_decoding_position_offsets,
spec_decoding_packed_mask=spec_decoding_packed_mask)
basic_inputs = {
'input_ids': input_ids,
'hidden_states_input': hidden_states,
'position_ids': position_ids,
'last_token_ids': last_token_ids,
'prompt_embedding_table': prompt_embedding_table,
'tasks': tasks,
'prompt_vocab_size': prompt_vocab_size,
'lora_ranks': lora_ranks,
'lora_weights_pointers': lora_weights_pointers,
'spec_decoding_params': spec_decoding_params
}
attention_inputs = self.prepare_attention_inputs(
max_batch_size=max_batch_size,
max_beam_width=max_beam_width,
max_input_len=max_input_len,
max_seq_len=max_seq_len,
num_kv_heads=num_kv_heads,
head_size=head_size,
num_layers=num_layers,
kv_dtype=kv_dtype,
num_profiles=num_profiles,
enable_ctx_gen_opt_profiles=enable_ctx_gen_opt_profiles,
remove_input_padding=remove_input_padding,
use_gpt_attention_plugin=use_gpt_attention_plugin,
kv_cache_type=kv_cache_type,
tokens_per_block=tokens_per_block,
mapping=mapping,
streamingllm=streamingllm,
opt_batch_size=opt_batch_size)
for key, value in attention_inputs.items():
basic_inputs[key] = value
return basic_inputs