| .. |
|
attention_backend
|
[feat] Optimize KV Cache Reuse for MLA (#4869)
|
2025-06-13 11:03:05 +08:00 |
|
auto_deploy
|
fix: build_config in TorchLlmArgs and avoid arbitrary args (#4972)
|
2025-06-15 17:51:56 -07:00 |
|
compilation
|
Feat/ds r1 min latency opt round3, add router gemm, fused a gemm, PDL (#4560)
|
2025-06-14 17:36:22 +08:00 |
|
custom_ops
|
Feat/ds r1 min latency opt round3, add router gemm, fused a gemm, PDL (#4560)
|
2025-06-14 17:36:22 +08:00 |
|
distributed
|
Feat/ds r1 min latency opt round3, add router gemm, fused a gemm, PDL (#4560)
|
2025-06-14 17:36:22 +08:00 |
|
models
|
[TRTLLM-4983] feat: enable overlap scheduler between draft forwards (#4802)
|
2025-06-15 23:09:16 +08:00 |
|
modules
|
feat: Enable EPLB to existing MoE models (#5203)
|
2025-06-15 11:48:06 +08:00 |
|
peft
|
feat: support multi lora adapters and TP (#3885)
|
2025-05-08 23:45:45 +08:00 |
|
pyexecutor
|
fix: build_config in TorchLlmArgs and avoid arbitrary args (#4972)
|
2025-06-15 17:51:56 -07:00 |
|
speculative
|
[TRTLLM-4983] feat: enable overlap scheduler between draft forwards (#4802)
|
2025-06-15 23:09:16 +08:00 |
|
__init__.py
|
Update TensorRT-LLM (#2755)
|
2025-02-11 03:01:00 +00:00 |
|
autotuner.py
|
[TRTLLM-5589] feat: Integrate TRT-LLM Gen FP8 Batched GEMM with Pytorch workflow kernel autotuner (#4872)
|
2025-06-09 11:02:48 +01:00 |
|
expert_statistic.py
|
feat: large-scale EP(part 5: Static EP load balancer with offline statistics) (#4695)
|
2025-06-02 01:25:02 +08:00 |
|
llm.py
|
test: [TRTLLM-4334] Create 1.0 criteria scope from API stability references (#3069)
|
2025-03-26 18:14:35 +08:00 |
|
metadata.py
|
feat: no-cache attention in PyTorch workflow (#3085)
|
2025-04-05 01:54:32 +08:00 |
|
model_config.py
|
feat: large-scale EP(part 7: DeepEP integration) (#4792)
|
2025-06-14 19:12:38 +08:00 |
|
utils.py
|
feat: Enhance AutoTuner inference path and code readability (#4466)
|
2025-06-04 10:53:11 +08:00 |