TensorRT-LLMs/tensorrt_llm/models/generation_mixin.py
Kaiyu Xie c89653021e
Update TensorRT-LLM (20240116) (#891)
* Update TensorRT-LLM

---------

Co-authored-by: Eddie-Wang1120 <81598289+Eddie-Wang1120@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-16 20:03:11 +08:00

604 lines
26 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from collections import OrderedDict
from typing import List
import tensorrt as trt
from tensorrt_llm.plugin.plugin import current_all_reduce_helper
from ..functional import Tensor
from ..logger import logger
from ..mapping import Mapping
class GenerationMixin:
@staticmethod
def has_two_optimization_profiles(use_gpt_attention_plugin: bool,
use_gemm_plugin: bool,
remove_input_padding: bool,
paged_kv_cache: bool) -> bool:
res = False
if use_gpt_attention_plugin == False or use_gemm_plugin == False:
use_in_flight_batching = use_gpt_attention_plugin and remove_input_padding and paged_kv_cache
res = not use_in_flight_batching
return res
@staticmethod
def default_range(max_range, offset=0):
result = [1, (max_range + 1) // 2, max_range]
return [elem + offset for elem in result]
def prepare_attention_inputs(self,
max_batch_size,
max_beam_width,
max_input_len,
max_new_tokens,
num_kv_heads,
head_size,
num_layers,
kv_dtype,
remove_input_padding=False,
use_gpt_attention_plugin=False,
use_gemm_plugin=False,
paged_kv_cache=False,
tokens_per_block=64,
mapping=Mapping(),
use_cache=True):
max_len = max_input_len + max_new_tokens
default_range = GenerationMixin.default_range
bb_range_cxt = default_range(max_batch_size)
bb_range_gen = default_range(max_batch_size * max_beam_width)
_bs_range = default_range(max_batch_size)
_beam_width_range = default_range(max_beam_width)
_max_len_range = default_range(max_len)
_mask_len_ctx = default_range(max_input_len)
_mask_len_gen = default_range(max_len, 1)
_kv_cache_range_ctx = [0, 0, 0]
_kv_cache_range_gen = default_range(max_len)
enable_two_optimization_profiles = GenerationMixin.has_two_optimization_profiles(
use_gpt_attention_plugin, use_gemm_plugin, remove_input_padding,
paged_kv_cache)
if enable_two_optimization_profiles:
bb_range = [bb_range_cxt, bb_range_gen]
bs_range = [_bs_range, _bs_range]
beam_width_range = [_beam_width_range, _beam_width_range]
max_len_range = [_max_len_range, _max_len_range]
mask_len_range = [_mask_len_ctx, _mask_len_gen]
if use_gpt_attention_plugin:
kv_cache_range = [_kv_cache_range_gen, _kv_cache_range_gen]
else:
kv_cache_range = [_kv_cache_range_ctx, _kv_cache_range_gen]
else:
bb_range = [bb_range_gen]
bs_range = [_bs_range]
beam_width_range = [_beam_width_range]
max_len_range = [_max_len_range]
mask_len_range = [_mask_len_gen]
kv_cache_range = [_kv_cache_range_gen]
num_kv_heads = (num_kv_heads + mapping.tp_size - 1) // mapping.tp_size
layers_range = mapping.pp_layers(num_layers)
past_key_value = []
kv_cache_block_pointers_list = []
host_kv_cache_block_pointers_list = []
if use_cache:
if not paged_kv_cache:
for i in layers_range:
kv_dim_range = OrderedDict([
('batch_size_beam_width', bb_range),
('kv',
[2, 2] if enable_two_optimization_profiles else [2]),
('num_heads', [num_kv_heads, num_kv_heads] if
enable_two_optimization_profiles else [num_kv_heads]),
('past_key_len', kv_cache_range),
('head_size', [head_size, head_size]
if enable_two_optimization_profiles else [head_size]),
])
kv = Tensor(name=f'past_key_value_{i}',
dtype=kv_dtype,
shape=[-1, 2, num_kv_heads, -1, head_size],
dim_range=kv_dim_range)
past_key_value.append(kv)
kv_cache_block_pointers_list.append(None)
host_kv_cache_block_pointers_list.append(None)
else:
if enable_two_optimization_profiles:
max_blocks_per_seq_range = [
[
math.ceil(kv_cache_range[0][0] / tokens_per_block),
math.ceil(kv_cache_range[0][1] / tokens_per_block),
math.ceil(kv_cache_range[0][2] / tokens_per_block)
],
[
math.ceil(kv_cache_range[1][0] / tokens_per_block),
math.ceil(kv_cache_range[1][1] / tokens_per_block),
math.ceil(kv_cache_range[1][2] / tokens_per_block)
]
]
max_blocks_per_seq_range = [[
x for x in max_blocks_per_seq_range[0]
], [x for x in max_blocks_per_seq_range[1]]]
else:
max_blocks_per_seq_range = [[
math.ceil(kv_cache_range[0][0] / tokens_per_block),
math.ceil(kv_cache_range[0][1] / tokens_per_block),
math.ceil(kv_cache_range[0][2] / tokens_per_block)
]]
max_blocks_per_seq_range = [[
x for x in max_blocks_per_seq_range[0]
]]
for i in layers_range:
kv_cache_block_pointers = Tensor(
name=f'kv_cache_block_pointers_{i}',
dtype=trt.int64,
shape=[-1, 2, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('kv', [2, 2]
if enable_two_optimization_profiles else [2]),
('max_blocks_per_seq', max_blocks_per_seq_range),
]))
kv_cache_block_pointers_list.append(kv_cache_block_pointers)
host_kv_cache_block_pointers = Tensor(
name=f'host_kv_cache_block_pointers_{i}',
dtype=trt.int64,
shape=[-1, 2, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('kv', [2, 2]
if enable_two_optimization_profiles else [2]),
('max_blocks_per_seq', max_blocks_per_seq_range),
]))
host_kv_cache_block_pointers_list.append(
host_kv_cache_block_pointers)
past_key_value.append(None)
sequence_length = None
context_lengths = None
host_context_lengths = None
host_past_key_value_lengths = None
host_max_attention_window_sizes = None
host_sink_token_length = None
attention_mask = None
cache_indirection = None
host_request_types = None
if use_gpt_attention_plugin:
if use_cache:
sequence_length = Tensor(
name='sequence_length',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width', bb_range)
]),
)
host_request_types = Tensor(
name='host_request_types',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width', bb_range)]),
)
if use_cache:
host_past_key_value_lengths = Tensor(
name='host_past_key_value_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width', bb_range)
]),
)
context_lengths = Tensor(
name='context_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width', bb_range)]),
)
else:
attention_mask = Tensor(
name='attention_mask',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('mask_len', mask_len_range),
]),
)
if use_gpt_attention_plugin and remove_input_padding:
host_context_lengths = Tensor(
name='host_context_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width', bb_range)]),
)
if use_gpt_attention_plugin:
host_max_attention_window_sizes = []
for i in layers_range:
host_max_attention_window_tensor = Tensor(
name=f'host_max_attention_window_size_{i}',
dtype=trt.int32,
shape=[1],
dim_range=OrderedDict([
('scalar',
[1, 1] if enable_two_optimization_profiles else [1])
]))
host_max_attention_window_sizes.append(
host_max_attention_window_tensor)
host_sink_token_length = Tensor(
name=f'host_sink_token_length',
dtype=trt.int32,
shape=[1],
dim_range=OrderedDict([
('scalar',
[1, 1] if enable_two_optimization_profiles else [1])
]))
if use_cache:
cache_indirection = Tensor(
name='cache_indirection',
dtype=trt.int32,
shape=[-1, -1, -1],
dim_range=OrderedDict([
('batch_size_cache', bs_range),
('beam_width', beam_width_range),
('max_seq_len', max_len_range),
]),
)
return {
'attention_mask': attention_mask,
'sequence_length': sequence_length,
'host_past_key_value_lengths': host_past_key_value_lengths,
'host_max_attention_window_sizes': host_max_attention_window_sizes,
'host_sink_token_length': host_sink_token_length,
'past_key_value': past_key_value,
'cache_indirection': cache_indirection,
'kv_cache_block_pointers_list': kv_cache_block_pointers_list,
'host_kv_cache_block_pointers_list':
host_kv_cache_block_pointers_list,
'context_lengths': context_lengths,
'host_context_lengths': host_context_lengths,
'host_request_types': host_request_types,
}
def prepare_basic_inputs(self,
max_batch_size,
max_beam_width,
max_input_len,
max_new_tokens,
num_kv_heads,
head_size,
num_layers,
kv_dtype,
remove_input_padding=False,
use_gpt_attention_plugin=False,
use_gemm_plugin=False,
use_custom_all_reduce=False,
paged_kv_cache=False,
tokens_per_block=64,
gather_context_logits=False,
gather_generation_logits=False,
dtype=None,
num_heads=None,
mapping=Mapping(),
max_num_tokens=None,
prompt_embedding_table_size: int = 0,
position_encoding_2d=False,
use_lora_plugin: bool = False,
lora_target_modules: List[str] = None,
max_draft_len=0):
default_range = GenerationMixin.default_range
last_token_range = [1, max_draft_len + 1, max_draft_len + 1]
bb_range_cxt = default_range(max_batch_size)
bb_range_gen = default_range(max_batch_size * max_beam_width)
bbd_range_ctx = [
bb_range_cxt[i] * ((max_draft_len + 1) if i != 0 else 1)
for i in range(len(bb_range_cxt))
]
bbd_range_gen = [
bb_range_gen[i] * ((max_draft_len + 1) if i != 0 else 1)
for i in range(len(bb_range_gen))
]
inlen_range_cxt = default_range(max_input_len)
inlen_range_gen = [1, 1, max_draft_len + 1]
if max_num_tokens is None:
default_max_num_tokens = 4096
logger.warning(
"max_num_tokens is not set, will choose a smaller "
f"value between max_input_len * max_batch_size ({max_input_len * max_batch_size}) "
f"and default_max_num_tokens ({default_max_num_tokens}).")
max_num_tokens = min(max_input_len * max_batch_size,
default_max_num_tokens)
if max_num_tokens < max_input_len:
logger.warning(
f"max_num_tokens ({max_num_tokens}) should be greater than "
f"max_input_len ({max_input_len}), specifying to "
f"max_input_len ({max_input_len}).")
max_num_tokens = max_input_len
enable_two_optimization_profiles = GenerationMixin.has_two_optimization_profiles(
use_gpt_attention_plugin, use_gemm_plugin, remove_input_padding,
paged_kv_cache)
if enable_two_optimization_profiles:
bb_range = [bb_range_cxt, bb_range_gen]
bbd_range = [bbd_range_ctx, bbd_range_gen]
inlen_range = [inlen_range_cxt, inlen_range_gen]
position_ids_inlen_range = [inlen_range_cxt, [1, 1, 1]]
num_tokens_range_ctx = default_range(max_num_tokens)
num_tokens_range_gen = default_range(max_batch_size *
max_beam_width)
num_tokens_range = [num_tokens_range_ctx, num_tokens_range_gen]
last_token_range = [last_token_range, last_token_range]
else:
bb_range = [bb_range_gen]
bbd_range = [bbd_range_gen]
last_token_range = [last_token_range]
inlen_range = [[1, 1, max_input_len]]
position_ids_inlen_range = [[1, 1, max_input_len]]
num_tokens_range = [default_range(max_num_tokens)]
input_ids = None
position_ids = None
hidden_states = None
if remove_input_padding:
if mapping.is_first_pp_rank():
input_ids = Tensor(name='input_ids',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('num_tokens', num_tokens_range),
]))
if position_encoding_2d:
position_ids = Tensor(
name='position_ids',
dtype=trt.int32,
shape=[2, -1],
dim_range=OrderedDict([
('2', [2, 2]
if enable_two_optimization_profiles else [2]),
('num_tokens', num_tokens_range),
]),
)
else:
position_ids = Tensor(
name='position_ids',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('num_tokens', num_tokens_range),
]),
)
else:
assert dtype is not None
assert num_heads is not None
hidden_states = Tensor(
name='hidden_states_input',
dtype=dtype,
shape=[-1, head_size * num_heads],
dim_range=OrderedDict([
('num_tokens', num_tokens_range),
('hidden_size',
[head_size * num_heads, head_size *
num_heads] if enable_two_optimization_profiles else
[head_size * num_heads]),
]))
else:
if mapping.is_first_pp_rank():
input_ids = Tensor(name='input_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('input_len', inlen_range),
]))
if position_encoding_2d:
position_ids = Tensor(
name='position_ids',
dtype=trt.int32,
shape=[-1, 2, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('2', [2, 2]
if enable_two_optimization_profiles else [2]),
('position_ids_inlen_range',
position_ids_inlen_range),
]),
)
else:
position_ids = Tensor(
name='position_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('position_ids_inlen_range',
position_ids_inlen_range),
]),
)
else:
assert dtype is not None
assert num_heads is not None
hidden_states = Tensor(
name='hidden_states_input',
dtype=dtype,
shape=[-1, -1, head_size * num_heads],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('input_len', inlen_range),
('hidden_size',
[head_size * num_heads, head_size *
num_heads] if enable_two_optimization_profiles else
[head_size * num_heads]),
]))
if use_custom_all_reduce and mapping.tp_size > 1:
current_all_reduce_helper().set_workspace_tensor(
mapping, enable_two_optimization_profiles)
prompt_embedding_table = None
tasks = None
prompt_vocab_size = None
if prompt_embedding_table_size > 0:
assert num_heads is not None
hidden_size = num_heads * head_size
_p_embedding_range = [
1, prompt_embedding_table_size // 2, prompt_embedding_table_size
]
if enable_two_optimization_profiles:
p_embedding_range = [_p_embedding_range, _p_embedding_range]
else:
p_embedding_range = [_p_embedding_range]
prompt_embedding_table = Tensor(
name='prompt_embedding_table',
dtype=dtype,
shape=[-1, hidden_size],
dim_range=OrderedDict([
('prompt_embedding_table_size', p_embedding_range),
('hidden_size', [hidden_size, hidden_size]
if enable_two_optimization_profiles else [hidden_size]),
]))
if remove_input_padding:
tasks = Tensor(name='tasks',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('input_len_task', num_tokens_range),
]))
else:
tasks = Tensor(
name='tasks',
dtype=trt.int32,
shape=[-1, 1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('broadcast_dim',
[1, 1] if enable_two_optimization_profiles else [1]),
]))
prompt_vocab_size = Tensor(
name='prompt_vocab_size',
dtype=trt.int32,
shape=[1],
dim_range=OrderedDict([
('size',
[1, 1] if enable_two_optimization_profiles else [1])
]))
lora_weights_pointers = None
lora_ranks = None
if use_lora_plugin:
lora_weights_pointers = []
lora_ranks = []
layers_range = mapping.pp_layers(num_layers)
for i in layers_range:
lora_weight_pointer_dict = {}
lora_rank_dict = {}
for lora_module in lora_target_modules:
lora_weight_pointer = Tensor(
name=f'{lora_module}_lora_weights_pointers_{i}',
dtype=trt.int64,
shape=[-1, 2],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('in_out', [2, 2]
if enable_two_optimization_profiles else [2]),
]))
lora_weight_pointer_dict.update({
f"{lora_module}_lora_weights_pointers":
lora_weight_pointer
})
lora_rank = Tensor(
name=f'{lora_module}_lora_ranks_{i}',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([('batch_size_beam_width',
bb_range)]),
)
lora_rank_dict.update(
{f"{lora_module}_lora_ranks": lora_rank})
lora_weights_pointers.append(lora_weight_pointer_dict)
lora_ranks.append(lora_rank_dict)
last_token_ids = None
if mapping.is_last_pp_rank() and not gather_context_logits:
if not remove_input_padding and max_draft_len > 0:
last_token_ids = Tensor(
name='last_token_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([
('batch_size_beam_width', bb_range),
('last_token_ids', last_token_range),
]),
)
else:
last_token_ids = Tensor(
name='last_token_ids',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('batch_size_last_token_ids', bbd_range),
]),
)
basic_inputs = {
'input_ids': input_ids,
'hidden_states_input': hidden_states,
'position_ids': position_ids,
'last_token_ids': last_token_ids,
'prompt_embedding_table': prompt_embedding_table,
'tasks': tasks,
'prompt_vocab_size': prompt_vocab_size,
'lora_ranks': lora_ranks,
'lora_weights_pointers': lora_weights_pointers,
}
attention_inputs = self.prepare_attention_inputs(
max_batch_size,
max_beam_width,
max_input_len,
max_new_tokens,
num_kv_heads,
head_size,
num_layers,
kv_dtype,
remove_input_padding=remove_input_padding,
use_gpt_attention_plugin=use_gpt_attention_plugin,
use_gemm_plugin=use_gemm_plugin,
paged_kv_cache=paged_kv_cache,
tokens_per_block=tokens_per_block,
mapping=mapping)
for key, value in attention_inputs.items():
basic_inputs[key] = value
return basic_inputs