mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* add mistral-7b-v0.1 torch flow test case Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * rearrange mistral Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * rearrange mixtral case Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * remove api function test Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * move mistral nemo cases Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * move mixtral cases Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * update threshold Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * fix failure Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * fix name Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * fix failure cases Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * update list Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * update threshold Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * remove awq llmapi test Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * adjust threshold Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * fix ci Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * fix partial comments Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * fix path Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * update thres Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * update Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * remove duplicate test case Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> * fix ci Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> --------- Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com>
377 lines
14 KiB
Python
377 lines
14 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Module test_mistral test mistral examples."""
|
|
import os
|
|
import platform
|
|
import uuid
|
|
|
|
import pytest
|
|
from defs.common import (convert_weights, quantize_data,
|
|
test_multi_lora_support, venv_check_call)
|
|
from defs.conftest import (evaltool_mmlu_post_process,
|
|
evaltool_wikilingua_post_process, skip_pre_ada)
|
|
from defs.trt_test_alternative import check_call
|
|
from evaltool.constants import (EVALTOOL_INFERENCE_SERVER_STARTUP_SCRIPT,
|
|
EVALTOOL_INFERENCE_SERVER_STOP_SCRIPT,
|
|
EVALTOOL_MMLU_CONFIG, EVALTOOL_MMLU_RESULT_FILE,
|
|
EVALTOOL_WIKILINGUA_CONFIG,
|
|
EVALTOOL_WIKILINGUA_RESULT_FILE)
|
|
|
|
|
|
@pytest.fixture(autouse=True, scope="module")
|
|
def mistral_example_root(llm_venv):
|
|
if platform.system() != "Windows":
|
|
# https://github.com/Dao-AILab/flash-attention/issues/345
|
|
# No wheel for flash-attn on windows and compilation fails locally.
|
|
install_cmd = [
|
|
"MAX_JOBS=4",
|
|
"python3",
|
|
"-m",
|
|
"pip",
|
|
"install",
|
|
"--upgrade",
|
|
"flash-attn==2.4.2",
|
|
]
|
|
|
|
check_call(" ".join(install_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"run_type",
|
|
['inference', 'summarization_long', 'chunked_summarization_long'])
|
|
@pytest.mark.parametrize("max_attention_window", [4096],
|
|
ids=['max_attention_window_size_4096'])
|
|
@pytest.mark.parametrize("data_type", ['float16'])
|
|
@pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mistral_v1_1gpu(run_type, data_type, llama_example_root,
|
|
max_attention_window, llm_mistral_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv,
|
|
cmodel_dir, engine_dir):
|
|
|
|
print("Build engines...")
|
|
if run_type == "summarization_long":
|
|
model_name = 'mistral-{}'.format(run_type)
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_mistral_model_root,
|
|
data_type=data_type)
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_input_len",
|
|
"6400",
|
|
f"--max_batch_size={1}",
|
|
"--max_seq_len",
|
|
"6528",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--context_fmha=enable",
|
|
"--use_paged_context_fmha=disable",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run long context summarize...")
|
|
# using shorter input length since A30 doesn't have enough device memory.
|
|
summary_cmd = [
|
|
f"{llama_example_root}/summarize_long.py",
|
|
"--test_trt_llm",
|
|
"--test_hf",
|
|
"--hf_model_location",
|
|
f"{llm_mistral_model_root}",
|
|
"--data_type",
|
|
"fp16",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--max_attention_window_size={max_attention_window}",
|
|
"--max_ite",
|
|
"3",
|
|
"--max_input_len",
|
|
"6400",
|
|
"--tensorrt_llm_rouge1_threshold",
|
|
"90",
|
|
"--check_accuracy",
|
|
]
|
|
# https://nvbugs/4658787
|
|
# WAR before summarize_long.py can work offline
|
|
env = {"HF_DATASETS_OFFLINE": "0"}
|
|
venv_check_call(llm_venv, summary_cmd, env=env)
|
|
|
|
# multi block + sliding window attention tests.
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_input_len",
|
|
"6400",
|
|
"--max_seq_len",
|
|
"6528",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--use_paged_context_fmha=disable",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run long context summarize with multi_block_mode enabled...")
|
|
# using shorter input length since A30 doesn't have enough device memory.
|
|
summary_cmd = [
|
|
f"{llama_example_root}/summarize_long.py", "--test_trt_llm",
|
|
"--test_hf", "--hf_model_location", f"{llm_mistral_model_root}",
|
|
"--data_type", "fp16", f"--engine_dir={engine_dir}",
|
|
f"--max_attention_window_size={max_attention_window}", "--max_ite",
|
|
"3", "--max_input_len", "6400", "--tensorrt_llm_rouge1_threshold",
|
|
"90", "--check_accuracy"
|
|
]
|
|
venv_check_call(llm_venv, summary_cmd, env=env)
|
|
|
|
elif run_type == "chunked_summarization_long":
|
|
model_name = 'mistral-{}'.format(run_type)
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_mistral_model_root,
|
|
data_type=data_type)
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_input_len",
|
|
"6400",
|
|
"--max_num_tokens=2048",
|
|
"--use_paged_context_fmha=enable",
|
|
f"--max_batch_size={1}",
|
|
"--max_seq_len",
|
|
"6528",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--context_fmha=enable",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run long context summarize...")
|
|
summary_cmd = [
|
|
f"{llama_example_root}/../../../summarize.py",
|
|
"--eval_task=summarize_long", "--test_trt_llm", "--test_hf",
|
|
"--hf_model_dir", f"{llm_mistral_model_root}", "--data_type",
|
|
"fp16", f"--engine_dir={engine_dir}",
|
|
f"--max_attention_window_size={max_attention_window}",
|
|
"--max_input_length", "6400", "--tensorrt_llm_rouge1_threshold",
|
|
"21", "--check_accuracy", "--enable_chunked_context"
|
|
]
|
|
# https://nvbugs/4658787
|
|
# WAR before summarize_long.py can work offline
|
|
env = {"HF_DATASETS_OFFLINE": "0"}
|
|
venv_check_call(llm_venv, summary_cmd, env=env)
|
|
|
|
|
|
@pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'],
|
|
indirect=True)
|
|
def test_mistal_evaltool(llama_example_root, llm_mistral_model_root, llm_venv,
|
|
cmodel_dir, engine_dir, evaltool_root):
|
|
|
|
print("Build engines...")
|
|
|
|
data_type = "float16"
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model='mistral',
|
|
model_path=llm_mistral_model_root,
|
|
data_type=data_type)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--gather_context_logits",
|
|
"--max_batch_size=8",
|
|
"--max_input_len=5000",
|
|
"--max_seq_len=7048",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Lm evaluation harness")
|
|
|
|
# start inference server
|
|
start_inference_server = [
|
|
EVALTOOL_INFERENCE_SERVER_STARTUP_SCRIPT, "-e", engine_dir, "-t",
|
|
llm_mistral_model_root, "-d", evaltool_root, "-m", "256"
|
|
]
|
|
check_call(" ".join(start_inference_server), shell=True)
|
|
|
|
task_list = ['mmlu', 'wikilingua']
|
|
|
|
try:
|
|
for task in task_list:
|
|
project_id = str(uuid.uuid4())
|
|
if task == "wikilingua":
|
|
config_file = EVALTOOL_WIKILINGUA_CONFIG
|
|
result_file = EVALTOOL_WIKILINGUA_RESULT_FILE
|
|
|
|
if task == "mmlu":
|
|
config_file = EVALTOOL_MMLU_CONFIG
|
|
result_file = EVALTOOL_MMLU_RESULT_FILE
|
|
|
|
model_name = os.path.basename(llm_mistral_model_root)
|
|
# Update config dynamically
|
|
import yaml
|
|
with open(config_file, 'r') as f:
|
|
lm_eval_config = yaml.safe_load(f)
|
|
lm_eval_config['model']['llm_name'] = model_name
|
|
lm_eval_config['model'][
|
|
'tokenizer_path'] = llm_mistral_model_root
|
|
|
|
config_file = os.path.join(llm_venv.get_working_directory(),
|
|
"lm_eval_config.yaml")
|
|
with open(config_file, 'w') as f:
|
|
yaml.dump(lm_eval_config, f)
|
|
|
|
# launch evaluation
|
|
run_cmd = [
|
|
f"cd {evaltool_root}",
|
|
"&&",
|
|
"source .venv/bin/activate",
|
|
"&&",
|
|
"python3",
|
|
"evaltool/interfaces/cli/main.py",
|
|
"project",
|
|
"launch",
|
|
f"--eval_project_config_file '{config_file}'",
|
|
"--infra_name local",
|
|
f"--output_dir '{llm_venv.get_working_directory()}'",
|
|
f"--project_id {project_id}",
|
|
]
|
|
check_call(" ".join(run_cmd), shell=True, executable="/bin/bash")
|
|
|
|
# process result
|
|
result_path = f"{llm_venv.get_working_directory()}/{project_id}/{result_file}"
|
|
check_call(f"cat {result_path}", shell=True)
|
|
|
|
if task == 'mmlu':
|
|
evaltool_mmlu_post_process(result_path, 0.6408, 0.006)
|
|
if task == 'wikilingua':
|
|
evaltool_wikilingua_post_process(result_path, 0.2443, 0.003)
|
|
|
|
finally:
|
|
# stop the server
|
|
check_call(f"{EVALTOOL_INFERENCE_SERVER_STOP_SCRIPT}", shell=True)
|
|
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.parametrize("llm_mistral_model_root", ['komt-mistral-7b-v1'],
|
|
indirect=True)
|
|
@pytest.mark.parametrize("llm_lora_model_root", ['komt-mistral-7b-v1-lora'],
|
|
indirect=True)
|
|
def test_llm_mistral_lora_1gpu(llama_example_root, llm_mistral_model_root,
|
|
llm_datasets_root, llm_venv, engine_dir,
|
|
llm_lora_model_root, qcache_dir):
|
|
"run mistral lora test on 1gpu"
|
|
print("Quantization...")
|
|
model_dir = quantize_data(
|
|
llm_venv,
|
|
llama_example_root,
|
|
model_dir=llm_mistral_model_root,
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
dtype="float16",
|
|
qformat="fp8",
|
|
quantize_dir=qcache_dir,
|
|
calib_size=512,
|
|
kv_cache_dtype="fp8")
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--lora_dir={llm_lora_model_root}",
|
|
"--lora_plugin=auto",
|
|
"--gemm_plugin=auto",
|
|
"--max_batch_size=8",
|
|
"--max_input_len=32256",
|
|
"--max_seq_len=33280",
|
|
"--use_paged_context_fmha=enable",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
input_text = "[INST]오늘은 날씨가 아주 좋다 내가 공원에 갔을 때 [/INST]"
|
|
|
|
run_cmd = [
|
|
f"{llama_example_root}/../../../run.py",
|
|
f"--input_text={input_text}",
|
|
f"--tokenizer_dir={llm_mistral_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
"--max_output_len=1024",
|
|
"--max_attention_window_size=4096",
|
|
"--lora_task_uids=0",
|
|
"--temperature=0.8",
|
|
"--top_p=0.8",
|
|
"--top_k=100",
|
|
"--random_seed=0",
|
|
]
|
|
|
|
venv_check_call(llm_venv, run_cmd)
|
|
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("mistral_nemo_minitron_model_root",
|
|
['Mistral-NeMo-Minitron-8B-Instruct'],
|
|
indirect=True)
|
|
def test_mistral_nemo_minitron_fp8_with_bf16_lora(
|
|
llama_example_root,
|
|
mistral_nemo_minitron_model_root,
|
|
llm_datasets_root,
|
|
qcache_dir,
|
|
llm_rouge_root,
|
|
llm_venv,
|
|
engine_dir,
|
|
num_beams=1,
|
|
):
|
|
"Run Mistral Nemo Minitron 8B with multiple pseudo LoRAs."
|
|
|
|
# Quantize the base model to fp8.
|
|
qmodel_dir = quantize_data(
|
|
llm_venv,
|
|
llama_example_root,
|
|
model_dir=mistral_nemo_minitron_model_root,
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
dtype="bfloat16",
|
|
qformat="fp8",
|
|
quantize_dir=qcache_dir,
|
|
calib_size=32,
|
|
kv_cache_dtype="fp8")
|
|
|
|
test_multi_lora_support(
|
|
hf_model_dir=mistral_nemo_minitron_model_root,
|
|
tllm_ckpt_dir=qmodel_dir,
|
|
engine_dir=engine_dir,
|
|
llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
num_loras=2,
|
|
lora_rank=8,
|
|
target_hf_modules=["q_proj", "k_proj", "v_proj"],
|
|
target_trtllm_modules=["attn_q", "attn_k", "attn_v"],
|
|
zero_lora_weights=True,
|
|
)
|