TensorRT-LLMs/tests/integration/defs/examples/test_phi.py
Dom Brown 8709fe8b53
chore: bump version to 0.19.0 (#3598) (#3841)
test: add test cases for 0.19 release (#3608)

* fix test name



* add quickstart test for nemotron-ultra



* add rcca multi-node test case for deepseek-v3



* add rcca info



---------




squash (#3642)



fix: nvbugs/5187237: fix deterministic mode crash (#3448)

* nvbugs/5187237 nvbugs/5112075: fix deterministic mode error

* remove waive


* Revert "remove waive"

This reverts commit 0bf5486d19906d692bfb7a6262333c296b0087ac.



* revert ar fusion



---------



update fp8 doc (#3647)




tests: change qa perf test to trtllm-bench (#3619)




 fix: FP8 quantized lm_head (NvBug 5214229) (#3567)



infra: Add PR approval protection for the release branch (#3634)



fix: nvbugs/5231298: pytorch allreduce issue (#3673)



Fix: nvbugs/5222698 variable not defined (#3630)

* Fix: nvbugs/5222698 variable not defined



* Tidy code



---------



test:sync waives.txt from main branch by disabling test_perf/gpt_350m-cppmanager case (#3685)



test:restore fp8 kv cache testing for L0 (#3671)



doc: Update DeepSeek perf docs (#3693)

* Update DeepSeek perf docs



* update



* Apply suggestions from code review




---------




tests: waive test_llm_multi_node (#3664)



fix: update test_user_buffers_mm_add_prologue atol (#3711)



Fix: cherry-pick hmac encryption from main branch (#3635)

* security fix cherry-pick changes from main



* fix hmac in remote mpi session (#3649)



---------





Un-waive DS-V3-Lite tests. (#3621)



fix: FP8 kv accuracy (#3675)

* fix FP8 kv accuracy



* update doc



---------



Fix script options for engines. (#3622)



unwaive multi-node test (#3721)



chore : Split more tests out of gpt tests (#3524) (#3674)



doc:add torch examples link into torch backend documentation (#3749)




test: Get Eagle tests working (#3593) (#3722)




Waive L0 test (#3756)



waive failed case in perf test, change default max_batch_size to 512 and write config.json to output log (#3656)





Update ds v3 parameters in stress test. (#3676)

waive gemma on L20 (#3766)



https://nvbugs/5141291: Fix convert.py script for Qwen model. (#3758)

Include Qwen2VLDecoderLayer in the smooth_qwen2_model function.



fix: PP4 fixes and cleanup (#3688)




remove benchmark test list (#3643)



skip disagg deepseek test if sm!=90 (#3720)



test: skip failed cases on B200 (#3710)

* add skip condition to tests



* fix error



---------



test: [nvbug: 5234494] skip_pre_ada for fp8 cases (#3718)

* skip_pre_ada for fp8 cases



* update



* update after rebase



---------



add know issue to deepseek doc. (#3800)



Fix ModelOpt Mixtral AWQ OOM (#3714) (#3761)




Waive L0 tests (#3826)



fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793)

* Reduce memory usage in fused moe op associated with AutoTuning.
* Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens.
* Add free_memory logic of workspace in min_latency_mode fused moe path.



* Fix fused_moe fallback issue. (#3652)

min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression.



---------



[doc] Better document for Draft-Target-Model (DTM) speculative decoding (#3797)




Fix pre-commit



Fix again



Address some review comments for the MI

Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
Co-authored-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
2025-04-29 16:57:22 +08:00

649 lines
25 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import os
import uuid
import pytest
from defs.common import (convert_weights, quantize_data,
test_multi_lora_support, venv_check_call,
venv_mpi_check_call)
from defs.conftest import (LLM_GATE_WAY_CLIENT_ID, LLM_GATE_WAY_TOKEN,
evaltool_mmlu_post_process,
evaltool_mtbench_post_process,
evaltool_wikilingua_post_process, get_device_memory,
get_sm_version, skip_fp8_pre_ada,
skip_post_blackwell, skip_pre_ada)
from defs.trt_test_alternative import check_call
from evaltool.constants import (EVALTOOL_INFERENCE_SERVER_STARTUP_SCRIPT,
EVALTOOL_INFERENCE_SERVER_STOP_SCRIPT,
EVALTOOL_MMLU_CONFIG, EVALTOOL_MMLU_RESULT_FILE,
EVALTOOL_MTBENCH_CONFIG,
EVALTOOL_MTBENCH_RESULT_FILE,
EVALTOOL_WIKILINGUA_CONFIG,
EVALTOOL_WIKILINGUA_RESULT_FILE)
@pytest.fixture(scope="module")
def phi_example_root(llm_root, llm_venv):
"Get phi example root"
example_root = os.path.join(llm_root, "examples", "models", "core", "phi")
llm_venv.run_cmd([
"-m", "pip", "install", "-r",
os.path.join(example_root, "requirements.txt")
])
return example_root
@pytest.mark.skip_less_device_memory(40000)
@pytest.mark.parametrize("num_beams", [1, 2, 4],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize(
"context_fmha_type",
["enable_fmha", "enable_fmha_with_fp32_acc", "disable_fmha"])
@pytest.mark.parametrize(
"use_attention_plugin", [True, False],
ids=["enable_attention_plugin", "disable_attention_plugin"])
@pytest.mark.parametrize("use_gemm_plugin", [True, False],
ids=["enable_gemm_plugin", "disable_gemm_plugin"])
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
@pytest.mark.parametrize("llm_phi_model_root", [
"phi-2", "Phi-3-mini-4k-instruct", "Phi-3-mini-128k-instruct",
"Phi-3-small-8k-instruct", "Phi-3-small-128k-instruct",
"Phi-3.5-mini-instruct"
],
indirect=True)
def test_llm_phi_single_gpu_summary(phi_example_root, llm_phi_model_root,
llm_datasets_root, llm_rouge_root, llm_venv,
cmodel_dir, engine_dir,
use_attention_plugin, use_gemm_plugin,
dtype, context_fmha_type, num_beams):
"Build & run phi on single gpu."
if (not use_attention_plugin or not use_gemm_plugin) \
and get_device_memory() < 80000:
pytest.skip("device memory is insufficient.")
if context_fmha_type != "disable_fmha":
# --enable_context_fmha / --enable_context_fmha_fp32_acc
# have to be used together with --use_gpt_attention_plugin
use_attention_plugin = True
print("Converting checkpoint...")
model_name = os.path.basename(llm_phi_model_root)
ckpt_dir = convert_weights(llm_venv=llm_venv,
example_root=phi_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_phi_model_root,
data_type=dtype)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--max_batch_size={16}",
f"--max_input_len={1024}",
f"--max_seq_len={2048}",
f"--max_beam_width={num_beams}",
]
if use_attention_plugin:
build_cmd.append(f"--gpt_attention_plugin={dtype}")
if context_fmha_type == "enable_fmha":
build_cmd.append("--context_fmha=enable")
elif context_fmha_type == "disable_fmha":
build_cmd.append("--context_fmha=disable")
else:
build_cmd.extend([
"--gpt_attention_plugin=disable",
"--context_fmha=disable",
"--paged_kv_cache=disable",
"--remove_input_padding=disable",
])
if use_gemm_plugin:
build_cmd.append(f"--gemm_plugin={dtype}")
else:
build_cmd.append("--gemm_plugin=disable")
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run phi...')
run_cmd = [
f"{phi_example_root}/../../../run.py",
"--max_output_len=50",
f"--engine_dir={engine_dir}",
f"--tokenizer_dir={llm_phi_model_root}",
]
venv_check_call(llm_venv, run_cmd)
rouge1_threshold = 20
if model_name == 'Phi-3-small-8k-instruct': rouge1_threshold = 18.0
if model_name == 'Phi-3-small-128k-instruct': rouge1_threshold = 19.0
summary_cmd = [
f"{phi_example_root}/../summarize.py", "--test_trt_llm",
"--hf_model_dir", f"{llm_phi_model_root}", "--data_type", "fp16",
"--check_accuracy", f"--engine_dir={engine_dir}",
f"--tensorrt_llm_rouge1_threshold={rouge1_threshold}",
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
]
if context_fmha_type == "enable_fmha_with_fp32_acc":
summary_cmd.append("--enable_context_fmha_fp32_acc")
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.skip_less_device(2)
@pytest.mark.skip_less_device_memory(40000)
@pytest.mark.parametrize("num_beams", [1, 4],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize("llm_phi_model_root", [
"phi-2", "Phi-3-mini-4k-instruct", "Phi-3-mini-128k-instruct",
"Phi-3-small-8k-instruct", "Phi-3-small-128k-instruct",
'Phi-3.5-MoE-instruct'
],
indirect=True)
def test_llm_phi_1node_2gpus_summary(phi_example_root, llm_phi_model_root,
llm_datasets_root, llm_rouge_root,
llm_venv, cmodel_dir, engine_dir,
num_beams):
"Build & run phi on 2 gpus."
print("Converting checkpoint...")
model_name = os.path.basename(llm_phi_model_root)
ckpt_dir = convert_weights(llm_venv=llm_venv,
example_root=phi_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_phi_model_root,
data_type="float16",
tp_size=2,
pp_size=1)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--max_batch_size={16}",
f"--max_input_len={1024}",
f"--max_seq_len={2048}",
f"--max_beam_width={num_beams}",
"--gemm_plugin=float16",
"--gpt_attention_plugin=float16",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run phi...')
rouge1_threshold = 21.2
if model_name == 'Phi-3.5-MoE-instruct': rouge1_threshold = 24.0
summary_cmd = [
f"{phi_example_root}/../../../summarize.py", "--test_trt_llm",
"--hf_model_dir", f"{llm_phi_model_root}", "--data_type", "fp16",
"--check_accuracy", f"--engine_dir={engine_dir}",
f"--tensorrt_llm_rouge1_threshold={rouge1_threshold}",
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
]
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "2", "--allow-run-as-root"],
summary_cmd)
@pytest.mark.parametrize("llm_phi_model_root",
["phi-2", "Phi-3-mini-4k-instruct"],
indirect=True)
def test_phi_evaltool(phi_example_root, llm_phi_model_root, llm_venv,
engine_dir, cmodel_dir, evaltool_root):
print("Build engines...")
dtype = 'float16'
model_name = os.path.basename(llm_phi_model_root)
model_dir = convert_weights(llm_venv=llm_venv,
example_root=phi_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_phi_model_root,
data_type=dtype)
print("Build engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
"--gather_context_logits",
"--max_batch_size=8",
"--max_input_len=5000",
"--max_seq_len=8192",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Lm evaluation harness")
# start inference server
start_inference_server = [
EVALTOOL_INFERENCE_SERVER_STARTUP_SCRIPT, "-e", engine_dir, "-t",
llm_phi_model_root, "-d", evaltool_root, "-m", "1024"
]
check_call(" ".join(start_inference_server), shell=True)
task_list = ['mmlu', 'wikilingua']
try:
for task in task_list:
project_id = str(uuid.uuid4())
if task == "wikilingua":
config_file = EVALTOOL_WIKILINGUA_CONFIG
result_file = EVALTOOL_WIKILINGUA_RESULT_FILE
if task == "mmlu":
config_file = EVALTOOL_MMLU_CONFIG
result_file = EVALTOOL_MMLU_RESULT_FILE
# Update config dynamically
import yaml
with open(config_file, 'r') as f:
lm_eval_config = yaml.safe_load(f)
lm_eval_config['model']['llm_name'] = model_name
lm_eval_config['model']['tokenizer_path'] = llm_phi_model_root
config_file = os.path.join(llm_venv.get_working_directory(),
"lm_eval_config.yaml")
with open(config_file, 'w') as f:
yaml.dump(lm_eval_config, f)
# launch evaluation
run_cmd = [
f"cd {evaltool_root}",
"&&",
"source .venv/bin/activate",
"&&",
"python3",
f"evaltool/interfaces/cli/main.py",
"project",
"launch",
f"--eval_project_config_file '{config_file}'",
"--infra_name local",
f"--output_dir '{llm_venv.get_working_directory()}'",
f"--project_id {project_id}",
]
check_call(" ".join(run_cmd), shell=True, executable="/bin/bash")
# process result
result_path = f"{llm_venv.get_working_directory()}/{project_id}/{result_file}"
check_call(f"cat {result_path}", shell=True)
if task == 'mmlu':
# Phi-2 suffers bad accuracy when no lstrip applied.
# evaltool_mmlu_post_process(result_path, 0.4949, 0.006)
evaltool_mmlu_post_process(result_path, 0.567, 0.006)
if task == 'wikilingua':
# evaltool_wikilingua_post_process(result_path, 0.1569, 0.003)
evaltool_wikilingua_post_process(result_path, 0.1827, 0.006)
finally:
# stop the server
check_call(f"{EVALTOOL_INFERENCE_SERVER_STOP_SCRIPT}", shell=True)
@pytest.mark.parametrize("llm_phi_model_root", ["Phi-3-mini-4k-instruct"],
indirect=True)
def test_phi3_mtbench(phi_example_root, llm_phi_model_root, llm_venv,
engine_dir, cmodel_dir, evaltool_root):
print("Build engines...")
data_type = "bfloat16"
model_name = os.path.basename(llm_phi_model_root)
model_dir = convert_weights(llm_venv=llm_venv,
example_root=phi_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_phi_model_root,
data_type=data_type)
print("Build engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
f"--gpt_attention_plugin={data_type}",
f"--gemm_plugin={data_type}",
"--gather_context_logits",
"--max_batch_size=8",
"--max_input_len=5000",
"--max_seq_len=8192",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("MT-Bench evaluation")
# start inference server
start_inference_server = [
EVALTOOL_INFERENCE_SERVER_STARTUP_SCRIPT, "-e", engine_dir, "-t",
llm_phi_model_root, "-d", evaltool_root, "-m", "1024"
]
check_call(" ".join(start_inference_server), shell=True)
try:
project_id = str(uuid.uuid4())
config_file = EVALTOOL_MTBENCH_CONFIG
result_file = EVALTOOL_MTBENCH_RESULT_FILE
model_name = os.path.basename(llm_phi_model_root)
# Update config dynamically
import yaml
with open(config_file, 'r') as f:
mt_bench_config = yaml.safe_load(f)
mt_bench_config['model']['llm_name'] = model_name
mt_bench_config['model']['tokenizer_path'] = phi_example_root
mt_bench_config['evaluations'][0]['judge_model'][
'client_id'] = LLM_GATE_WAY_CLIENT_ID
mt_bench_config['evaluations'][0]['judge_model'][
'client_secret'] = LLM_GATE_WAY_TOKEN
config_file = os.path.join(llm_venv.get_working_directory(),
f"{model_name}_mtbench_config.yaml")
with open(config_file, 'w') as f:
yaml.dump(mt_bench_config, f)
# Update resource config
run_cmd = [
f"cd {evaltool_root}",
"&&",
"source .venv/bin/activate",
"&&",
"python3",
"evaltool/interfaces/cli/main.py",
"config",
"resource",
"--resource_config_file examples/resource_configs/resource_local.yaml",
]
check_call(" ".join(run_cmd), shell=True, executable="/bin/bash")
# launch evaluation
run_cmd = [
f"cd {evaltool_root}",
"&&",
"source .venv/bin/activate",
"&&",
"python3",
f"evaltool/interfaces/cli/main.py",
"project",
"launch",
f"--eval_project_config_file '{config_file}'",
"--infra_name local",
f"--output_dir '{llm_venv.get_working_directory()}'",
f"--project_id {project_id}",
]
check_call(" ".join(run_cmd), shell=True, executable="/bin/bash")
finally:
# stop the server
check_call(f"{EVALTOOL_INFERENCE_SERVER_STOP_SCRIPT}", shell=True)
# process result
result_path = f"{llm_venv.get_working_directory()}/{project_id}/{result_file}/{model_name}.csv"
check_call(f"cat {result_path}", shell=True)
evaltool_mtbench_post_process(result_path, 7.45, 0.2)
@pytest.mark.parametrize("data_type", ["float16", "fp8"],
ids=["base_fp16", "base_fp8"])
@pytest.mark.parametrize("lora_data_type", ["float16"], ids=["lora_fp16"])
@pytest.mark.parametrize("llm_phi_model_root", ["Phi-3-mini-4k-instruct"],
indirect=True)
@pytest.mark.parametrize("llm_lora_model_root",
["Phi-3-mini-4k-instruct-ru-lora"],
indirect=True)
def test_llm_phi_lora_1gpu(data_type, lora_data_type, phi_example_root,
llm_phi_model_root, llm_datasets_root, llm_venv,
cmodel_dir, engine_dir, llm_lora_model_root,
qcache_dir_without_install_package):
"run phi lora test on 1gpu"
print("Converting checkpoint...")
model_name = 'phi-3-lora'
if data_type == 'fp8':
skip_fp8_pre_ada(use_fp8=True)
if get_sm_version() >= 100:
pytest.skip("FP8 is not supported on post-Blackwell architectures")
model_dir = quantize_data(
llm_venv,
phi_example_root,
model_dir=llm_phi_model_root,
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
dtype="float16",
qformat="fp8",
kv_cache_dtype="fp8",
quantize_dir=qcache_dir_without_install_package,
calib_size=512)
else:
model_dir = convert_weights(llm_venv=llm_venv,
example_root=phi_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_phi_model_root)
print("Build engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
"--lora_plugin=auto",
"--gemm_plugin=auto",
"--max_batch_size=8",
f"--lora_dir={llm_lora_model_root}",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
ref_1 = [
1, 1815, 366, 3867, 5837, 304, 17545, 18240, 310, 9892, 16397, 322,
8338, 265, 29888, 21211, 29973, 306, 29915, 29885, 3063, 363, 907, 1230,
322, 9045, 29891, 9522, 5547, 393, 11039, 403, 1716, 285, 21211, 29889,
29871
]
ref_2 = [
1815, 366, 3867, 5837, 304, 17545, 18240, 310, 9892, 16397, 322, 8338,
265, 29888, 21211, 29973, 13, 13, 7900, 22137, 29901, 315, 13946, 368,
29991, 2266, 526, 777, 907, 1230, 5837, 304, 13389, 9892, 16397, 322
]
input_text = "Can you provide ways to eat combinations of bananas and dragonfruits?"
print(f"Run inference with lora id 0...")
venv_check_call(llm_venv, [
f"{phi_example_root}/../../../run.py",
"--max_output_len=20",
f"--input_text={input_text}",
"--lora_task_uids=0",
f"--tokenizer_dir={llm_lora_model_root}",
f"--engine_dir={engine_dir}",
f"--output_csv={llm_venv.get_working_directory()}/use_lora.csv",
"--use_py_session",
])
with open(f"{llm_venv.get_working_directory()}/use_lora.csv") as f:
predict = csv.reader(f)
predict = next(predict)
predict = [int(p) for p in predict]
assert ref_1 == predict or data_type != "float16"
print(f"Run inference with lora id -1...")
venv_check_call(llm_venv, [
f"{phi_example_root}/../../../run.py",
"--max_output_len=20",
f"--input_text={input_text}",
"--lora_task_uids=-1",
f"--tokenizer_dir={llm_phi_model_root}",
f"--engine_dir={engine_dir}",
f"--output_csv={llm_venv.get_working_directory()}/no_lora.csv",
"--use_py_session",
])
with open(f"{llm_venv.get_working_directory()}/no_lora.csv") as f:
predict = csv.reader(f)
predict = next(predict)
predict = [int(p) for p in predict]
assert ref_2 == predict or data_type != "float16"
@skip_pre_ada
@pytest.mark.parametrize("data_type", ['float16', 'bfloat16'])
@pytest.mark.parametrize("qformat", ['fp8'])
@pytest.mark.parametrize("llm_phi_model_root", [
"phi-2", "Phi-3-mini-128k-instruct", "Phi-3-small-128k-instruct",
"Phi-3.5-mini-instruct", "Phi-3.5-MoE-instruct", "Phi-4-mini-instruct"
],
indirect=True)
def test_llm_phi_quantization_1gpu(data_type, llm_phi_model_root, llm_venv,
cmodel_dir, engine_dir, phi_example_root,
llm_datasets_root, llm_rouge_root, qformat):
"Run phi quantization tests"
# Workaround for Modelopt can't convert Phi-3 on multi GPUs.
gpu_constraint = {"CUDA_VISIBLE_DEVICES": "0"}
print("Convert checkpoint by modelopt...")
convert_cmd = [
f"{phi_example_root}/../../../quantization/quantize.py",
f"--model_dir={llm_phi_model_root}",
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
f"--dtype={data_type}",
f"--qformat={qformat}",
f"--kv_cache_dtype={qformat}",
f"--output_dir={cmodel_dir}",
]
venv_check_call(llm_venv, convert_cmd, env=gpu_constraint)
print("Build engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={cmodel_dir}",
f"--output_dir={engine_dir}",
"--max_input_len=3000",
"--max_seq_len=3100",
f"--max_batch_size={16}",
]
build_env = {
**llm_venv._new_env,
**gpu_constraint
} if llm_venv._new_env else gpu_constraint
check_call(" ".join(build_cmd), shell=True, env=build_env)
print("Run summarize...")
threshold_score = 24.0
model_name = os.path.basename(llm_phi_model_root)
if model_name == "phi-2":
threshold_score = 22.0
summary_cmd = [
f"{phi_example_root}/../../../summarize.py",
"--test_trt_llm",
f"--hf_model_dir={llm_phi_model_root}",
f"--tokenizer_dir={llm_phi_model_root}",
f"--engine_dir={engine_dir}",
"--check_accuracy",
f"--tensorrt_llm_rouge1_threshold={threshold_score}",
"--max_ite=40",
f"--batch_size={16}",
f"--dataset_dir={llm_datasets_root}",
f"--rouge_dir={llm_rouge_root}",
]
venv_check_call(llm_venv, summary_cmd, env=gpu_constraint)
@skip_pre_ada
@skip_post_blackwell
@pytest.mark.parametrize("llm_phi_model_root", [
"phi-2", "Phi-3-mini-128k-instruct", "Phi-3-small-128k-instruct",
"Phi-3.5-mini-instruct", "Phi-3.5-MoE-instruct", "Phi-4-mini-instruct"
],
indirect=True)
def test_phi_fp8_with_bf16_lora(llm_phi_model_root,
llm_venv,
cmodel_dir,
engine_dir,
phi_example_root,
llm_datasets_root,
llm_rouge_root,
data_type='bfloat16',
qformat='fp8'):
"Run Phi models with multiple pseudo LoRAs."
model_name = os.path.basename(llm_phi_model_root)
if model_name == "Phi-3.5-MoE-instruct" and \
get_device_memory() < 95000:
pytest.skip(f"This test is only supported when memory >= 95000")
# Quantize the base model to fp8.
print("Convert checkpoint by modelopt...")
convert_cmd = [
f"{phi_example_root}/../../../quantization/quantize.py",
f"--model_dir={llm_phi_model_root}",
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
f"--dtype={data_type}",
f"--qformat={qformat}",
f"--kv_cache_dtype={qformat}",
f"--output_dir={cmodel_dir}",
]
# Workaround for Modelopt can't convert Phi-3-small-128k-instruct on multi GPUs.
env = None
if model_name == "Phi-3-small-128k-instruct":
env = {"CUDA_VISIBLE_DEVICES": "0"}
venv_check_call(llm_venv, convert_cmd, env=env)
print("Creating pseudo LoRAs...")
hf_target_modules = {
"phi-2": ["q_proj", "k_proj", "v_proj"],
"Phi-3-mini-128k-instruct": ["qkv_proj"],
"Phi-3-small-128k-instruct": ["query_key_value"],
"Phi-3.5-mini-instruct": ["qkv_proj"],
"Phi-3.5-MoE-instruct":
["q_proj", "k_proj", "v_proj", "w1", "w2", "w3"],
"Phi-4-mini-instruct": ["qkv_proj"],
}
trtllm_target_modules = {
"phi-2": ["attn_q", "attn_k", "attn_v"],
"Phi-3-mini-128k-instruct": ["attn_qkv"],
"Phi-3-small-128k-instruct": ["attn_qkv"],
"Phi-3.5-mini-instruct": ["attn_qkv"],
"Phi-3.5-MoE-instruct": [
"attn_q", "attn_k", "attn_v", "moe_h_to_4h", "moe_4h_to_h",
"moe_gate"
],
"Phi-4-mini-instruct": ["attn_qkv"],
}
model_name = os.path.basename(llm_phi_model_root)
test_multi_lora_support(
hf_model_dir=llm_phi_model_root,
tllm_ckpt_dir=cmodel_dir,
engine_dir=engine_dir,
llm_venv=llm_venv,
example_root=phi_example_root,
num_loras=2,
lora_rank=8,
target_hf_modules=hf_target_modules[model_name],
target_trtllm_modules=trtllm_target_modules[model_name],
zero_lora_weights=True,
)