mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
424 lines
16 KiB
Python
424 lines
16 KiB
Python
# Adopted from
|
|
# https://github.com/vllm-project/vllm/blob/200bbf92e8861e2458a6f90bca73f40cc3b1ad1f/benchmarks/backend_request_func.py
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import json
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional, Union
|
|
|
|
import aiohttp
|
|
from tqdm.asyncio import tqdm
|
|
from transformers import (AutoTokenizer, PreTrainedTokenizer,
|
|
PreTrainedTokenizerFast)
|
|
|
|
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
|
|
|
|
|
|
@dataclass
|
|
class RequestFuncInput:
|
|
prompt: str
|
|
api_url: str
|
|
prompt_len: int
|
|
output_len: int
|
|
model: str
|
|
model_name: Optional[str] = None
|
|
logprobs: Optional[int] = None
|
|
extra_body: Optional[dict] = None
|
|
ignore_eos: bool = False
|
|
language: Optional[str] = None
|
|
|
|
|
|
@dataclass
|
|
class RequestFuncOutput:
|
|
generated_text: str = ""
|
|
success: bool = False
|
|
latency: float = 0.0
|
|
output_tokens: int = 0
|
|
ttft: float = 0.0 # Time to first token
|
|
itl: list[float] = field(
|
|
default_factory=list) # list of inter-token latencies
|
|
tpot: float = 0.0 # avg next-token latencies
|
|
prompt_len: int = 0
|
|
error: str = ""
|
|
decode_iteration: int = 0 # Number of decoding iterations
|
|
|
|
|
|
async def async_request_trt_llm(
|
|
request_func_input: RequestFuncInput,
|
|
streaming: bool = True,
|
|
pbar: Optional[tqdm] = None,
|
|
session: Optional[aiohttp.ClientSession] = None,
|
|
) -> RequestFuncOutput:
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith("generate_stream")
|
|
|
|
request_session = aiohttp.ClientSession(
|
|
trust_env=True,
|
|
timeout=AIOHTTP_TIMEOUT,
|
|
connector=aiohttp.TCPConnector(
|
|
limit=0, limit_per_host=0)) if session is None else session
|
|
|
|
payload = {
|
|
"accumulate_tokens": True,
|
|
"text_input": request_func_input.prompt,
|
|
"temperature": 0.0,
|
|
"top_p": 1.0,
|
|
"max_tokens": request_func_input.output_len,
|
|
"stream": streaming,
|
|
}
|
|
if request_func_input.ignore_eos:
|
|
payload["min_length"] = request_func_input.output_len
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
|
|
ttft = 0.0
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
decode_iteration_count = 0 # Track decoding iterations
|
|
try:
|
|
async with request_session.post(url=api_url, json=payload) as response:
|
|
if response.status == 200:
|
|
output.success = True
|
|
if streaming:
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
|
|
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
|
"data:")
|
|
|
|
data = json.loads(chunk)
|
|
output.generated_text += data["text_output"]
|
|
timestamp = time.perf_counter()
|
|
# First token
|
|
if ttft == 0.0:
|
|
ttft = timestamp - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp - most_recent_timestamp)
|
|
|
|
# Increment decode iteration for each chunk
|
|
decode_iteration_count += 1
|
|
most_recent_timestamp = timestamp
|
|
|
|
output.latency = most_recent_timestamp - st
|
|
output.decode_iteration = decode_iteration_count
|
|
else:
|
|
content = await response.content.read()
|
|
data = json.loads(content.decode())
|
|
output.ttft = -1
|
|
output.itl = []
|
|
output.generated_text = data["text_output"]
|
|
output.latency = time.perf_counter() - st
|
|
# For non-streaming, estimate decode_iteration as number of output tokens
|
|
output.decode_iteration = len(output.generated_text.split(
|
|
)) if output.generated_text else 1
|
|
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
finally:
|
|
if session is None:
|
|
await request_session.close()
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
async def async_request_openai_completions(
|
|
request_func_input: RequestFuncInput,
|
|
streaming: bool = True,
|
|
pbar: Optional[tqdm] = None,
|
|
session: Optional[aiohttp.ClientSession] = None,
|
|
) -> RequestFuncOutput:
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith(
|
|
("completions", "profile")
|
|
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
|
|
|
|
request_session = aiohttp.ClientSession(
|
|
trust_env=True,
|
|
timeout=AIOHTTP_TIMEOUT,
|
|
connector=aiohttp.TCPConnector(
|
|
limit=0, limit_per_host=0)) if session is None else session
|
|
|
|
payload = {
|
|
"model": request_func_input.model_name \
|
|
if request_func_input.model_name else request_func_input.model,
|
|
"prompt": request_func_input.prompt,
|
|
"temperature": 0.0,
|
|
"repetition_penalty": 1.0,
|
|
"max_tokens": request_func_input.output_len,
|
|
"logprobs": request_func_input.logprobs,
|
|
"stream": streaming,
|
|
}
|
|
if streaming:
|
|
payload["stream_options"] = {"include_usage": True}
|
|
if request_func_input.ignore_eos:
|
|
payload["ignore_eos"] = request_func_input.ignore_eos
|
|
if request_func_input.extra_body:
|
|
payload.update(request_func_input.extra_body)
|
|
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
|
|
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
|
|
generated_text = ""
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
decode_iteration_count = 0 # Track decoding iterations
|
|
try:
|
|
async with request_session.post(url=api_url,
|
|
json=payload,
|
|
headers=headers) as response:
|
|
if response.status == 200:
|
|
if streaming:
|
|
first_chunk_received = False
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
|
|
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
|
"data: ")
|
|
if chunk != "[DONE]":
|
|
data = json.loads(chunk)
|
|
|
|
# NOTE: Some completion API might have a last
|
|
# usage summary response without a token so we
|
|
# want to check a token was generated
|
|
if choices := data.get("choices"):
|
|
# Note that text could be empty here
|
|
# e.g. for special tokens
|
|
text = choices[0].get("text")
|
|
timestamp = time.perf_counter()
|
|
# First token
|
|
if not first_chunk_received:
|
|
first_chunk_received = True
|
|
ttft = time.perf_counter() - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp -
|
|
most_recent_timestamp)
|
|
|
|
# Increment decode iteration for each chunk with text
|
|
if text is not None:
|
|
decode_iteration_count += 1
|
|
most_recent_timestamp = timestamp
|
|
generated_text += text or ""
|
|
elif usage := data.get("usage"):
|
|
output.output_tokens = usage.get(
|
|
"completion_tokens")
|
|
if first_chunk_received:
|
|
output.success = True
|
|
else:
|
|
output.success = False
|
|
output.error = (
|
|
"Never received a valid chunk to calculate TTFT."
|
|
"This response will be marked as failed!")
|
|
output.generated_text = generated_text
|
|
output.latency = most_recent_timestamp - st
|
|
output.decode_iteration = decode_iteration_count
|
|
else:
|
|
content = await response.content.read()
|
|
data = json.loads(content.decode())
|
|
generated_text = data["choices"][0]["text"]
|
|
output.success = True
|
|
output.generated_text = generated_text
|
|
output.latency = time.perf_counter() - st
|
|
output.ttft = -1
|
|
output.itl = []
|
|
output.output_tokens = data["usage"]["completion_tokens"]
|
|
# For non-streaming, estimate decode_iteration as number of output tokens
|
|
output.decode_iteration = output.output_tokens if output.output_tokens > 0 else 1
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
finally:
|
|
if session is None:
|
|
await request_session.close()
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
async def async_request_openai_chat_completions(
|
|
request_func_input: RequestFuncInput,
|
|
streaming: bool = True,
|
|
pbar: Optional[tqdm] = None,
|
|
session: Optional[aiohttp.ClientSession] = None,
|
|
) -> RequestFuncOutput:
|
|
api_url = request_func_input.api_url
|
|
assert api_url.endswith(
|
|
("chat/completions", "profile"
|
|
)), "OpenAI Chat Completions API URL must end with 'chat/completions'."
|
|
|
|
request_session = aiohttp.ClientSession(
|
|
trust_env=True,
|
|
timeout=AIOHTTP_TIMEOUT,
|
|
connector=aiohttp.TCPConnector(
|
|
limit=0, limit_per_host=0)) if session is None else session
|
|
|
|
payload = {
|
|
"model": request_func_input.model_name \
|
|
if request_func_input.model_name else request_func_input.model,
|
|
"messages": [
|
|
],
|
|
"temperature": 0.0,
|
|
"max_completion_tokens": request_func_input.output_len,
|
|
"stream": streaming,
|
|
}
|
|
|
|
if isinstance(request_func_input.prompt, list) and all(
|
|
[isinstance(i, int) for i in request_func_input.prompt]):
|
|
payload["prompt_token_ids"] = request_func_input.prompt
|
|
else:
|
|
assert isinstance(request_func_input.prompt,
|
|
str), "Prompt must be a string or a list of integers"
|
|
payload["messages"].append({
|
|
"role":
|
|
"user",
|
|
"content": [{
|
|
"type": "text",
|
|
"text": request_func_input.prompt
|
|
}]
|
|
})
|
|
|
|
if streaming:
|
|
payload["stream_options"] = {"include_usage": True}
|
|
if request_func_input.ignore_eos:
|
|
payload["ignore_eos"] = request_func_input.ignore_eos
|
|
if request_func_input.extra_body:
|
|
payload.update(request_func_input.extra_body)
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
|
}
|
|
|
|
output = RequestFuncOutput()
|
|
output.prompt_len = request_func_input.prompt_len
|
|
|
|
generated_text = ""
|
|
ttft = 0.0
|
|
st = time.perf_counter()
|
|
most_recent_timestamp = st
|
|
decode_iteration_count = 0 # Track decoding iterations
|
|
try:
|
|
async with request_session.post(url=api_url,
|
|
json=payload,
|
|
headers=headers) as response:
|
|
if response.status == 200:
|
|
output.success = True
|
|
if streaming:
|
|
async for chunk_bytes in response.content:
|
|
chunk_bytes = chunk_bytes.strip()
|
|
if not chunk_bytes:
|
|
continue
|
|
|
|
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
|
"data: ")
|
|
if chunk != "[DONE]":
|
|
timestamp = time.perf_counter()
|
|
data = json.loads(chunk)
|
|
|
|
if choices := data.get("choices"):
|
|
content = choices[0]["delta"].get("content")
|
|
# First token
|
|
if ttft == 0.0:
|
|
ttft = timestamp - st
|
|
output.ttft = ttft
|
|
|
|
# Decoding phase
|
|
else:
|
|
output.itl.append(timestamp -
|
|
most_recent_timestamp)
|
|
|
|
# Increment decode iteration for each chunk with content
|
|
if content is not None:
|
|
decode_iteration_count += 1
|
|
generated_text += content or ""
|
|
elif usage := data.get("usage"):
|
|
output.output_tokens = usage.get(
|
|
"completion_tokens")
|
|
|
|
most_recent_timestamp = timestamp
|
|
|
|
output.generated_text = generated_text
|
|
output.latency = most_recent_timestamp - st
|
|
output.decode_iteration = decode_iteration_count
|
|
else:
|
|
content = await response.content.read()
|
|
data = json.loads(content.decode())
|
|
output.generated_text = data["choices"][0]["message"][
|
|
"content"]
|
|
output.output_tokens = data["usage"]["completion_tokens"]
|
|
output.itl = []
|
|
output.latency = time.perf_counter() - st
|
|
output.ttft = -1
|
|
# For non-streaming, estimate decode_iteration as number of output tokens
|
|
output.decode_iteration = output.output_tokens if output.output_tokens > 0 else 1
|
|
|
|
else:
|
|
output.error = response.reason or ""
|
|
output.success = False
|
|
except Exception:
|
|
output.success = False
|
|
exc_info = sys.exc_info()
|
|
output.error = "".join(traceback.format_exception(*exc_info))
|
|
finally:
|
|
if session is None:
|
|
await request_session.close()
|
|
|
|
if pbar:
|
|
pbar.update(1)
|
|
return output
|
|
|
|
|
|
def get_tokenizer(
|
|
pretrained_model_name_or_path: str,
|
|
tokenizer_mode: str = "auto",
|
|
trust_remote_code: bool = False,
|
|
**kwargs,
|
|
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
|
if tokenizer_mode == "slow":
|
|
if kwargs.get("use_fast", False):
|
|
raise ValueError(
|
|
"Cannot use the fast tokenizer in slow tokenizer mode.")
|
|
kwargs["use_fast"] = False
|
|
return AutoTokenizer.from_pretrained(
|
|
pretrained_model_name_or_path,
|
|
trust_remote_code=trust_remote_code,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
ASYNC_REQUEST_FUNCS = {
|
|
"openai": async_request_openai_completions,
|
|
"openai-chat": async_request_openai_chat_completions,
|
|
}
|
|
|
|
OPENAI_COMPATIBLE_BACKENDS = [
|
|
k for k, v in ASYNC_REQUEST_FUNCS.items()
|
|
if v in (async_request_openai_completions,
|
|
async_request_openai_chat_completions)
|
|
]
|