TensorRT-LLMs/cpp/tensorrt_llm/thop/fp4BlockScaleMoe.cpp
Yi Zhang 9cc4e5d50e [nvbugs/5336321][fix] Enable attention dp = False test case, Fix TRTLLM Gen Moe workspace allocation (#5463)
Signed-off-by: Yi Zhang <187001205+yizhang-nv@users.noreply.github.com>
Signed-off-by: yizhan <187001205+yizhang-nv@users.noreply.github.com>
2025-07-14 17:17:30 +08:00

368 lines
21 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/kernels/quantization.h"
#include "tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.h"
#include "tensorrt_llm/runtime/torchUtils.h"
#include "tensorrt_llm/thop/thUtils.h"
#include <ATen/cuda/EmptyTensor.h>
#include <ATen/ops/index_select.h>
namespace torch_ext
{
namespace btg = batchedGemm::trtllm::gen;
using tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::RoutingMethodType;
using MoeRunnerType = tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::Runner;
std::vector<torch::Tensor> run_fp4_block_scale_moe_runner(torch::Tensor const& routing_logits,
torch::optional<torch::Tensor> const& routing_bias, torch::Tensor const& hidden_states,
torch::Tensor const& hidden_states_scale, torch::Tensor const& gemm1_weights,
torch::Tensor const& gemm1_weights_scale, torch::Tensor const& gemm2_weights,
torch::Tensor const& gemm2_weights_scale, torch::Tensor const& output1_scales_scalar,
torch::Tensor const& output1_scales_gate_scalar, torch::Tensor const& output2_scales_scalar,
int64_t const num_experts, int64_t const top_k, std::optional<int64_t> const n_group,
std::optional<int64_t> const topk_group, int64_t const intermediate_size, int64_t const local_expert_offset,
int64_t const local_num_experts, std::optional<double> const routed_scaling_factor, int64_t const tile_tokens_dim,
int64_t const routing_method_type, bool const do_finalize, MoeRunnerType& moe_runner, int64_t const moeConfigIndex)
{
auto const sm = tensorrt_llm::common::getSMVersion();
TORCH_CHECK(sm == 100, "Only SM100 is supported by FP4 block scale MOE");
TORCH_CHECK(tile_tokens_dim == 8 || tile_tokens_dim == 16 || tile_tokens_dim == 32 || tile_tokens_dim == 64,
"tile_tokens_dim must be 8, 16, 32, 64");
if (static_cast<RoutingMethodType>(routing_method_type) == RoutingMethodType::DeepSeekV3)
{
TORCH_CHECK(routing_logits.scalar_type() == at::ScalarType::Float, "routing_logits must be float");
}
else
{
TORCH_CHECK(routing_logits.scalar_type() == at::ScalarType::BFloat16, "routing_logits must be bfloat16");
}
TORCH_CHECK(routing_logits.dim() == 2, "routing_logits must be 2D.");
TORCH_CHECK(routing_logits.sizes()[0] == hidden_states.sizes()[0],
"routing_logits and hidden_states must have the same number of tokens.");
TORCH_CHECK(routing_logits.sizes()[1] == num_experts, "routing_logits has incorrect shape.");
if (routing_bias.has_value())
{
TORCH_CHECK(routing_bias.value().scalar_type() == at::ScalarType::BFloat16, "routing_bias must be bfloat16.");
TORCH_CHECK(routing_bias.value().dim() == 1, "routing_bias must be 1D.");
TORCH_CHECK(routing_bias.value().sizes()[0] == num_experts, "routing_bias has incorrect shape.");
}
if (n_group.has_value())
{
TORCH_CHECK(static_cast<RoutingMethodType>(routing_method_type) == RoutingMethodType::DeepSeekV3,
"Routing kernel with groups implies DeepSeekV3 routing method.");
TORCH_CHECK(topk_group.has_value(), "if n_group is given, topk_group must be given");
TORCH_CHECK(num_experts % n_group.value() == 0, "num_experts must be divisible by n_group");
TORCH_CHECK(top_k <= 8, "Current routing kernel (with groups) only supports top_k<=8.");
TORCH_CHECK(topk_group.value() <= 4, "Current routing kernel only (with groups) supports topk_group<=4.");
TORCH_CHECK(topk_group.value() <= n_group.value(), "n_group must not be smaller than topk_group.");
// This check ensures we have enough experts in the selected groups to handle the top_k routing
TORCH_CHECK(top_k < (topk_group.value() * num_experts / n_group.value()),
"top_k must be less than total number of experts in selected groups");
}
else if (static_cast<RoutingMethodType>(routing_method_type) == RoutingMethodType::Renormalize
|| static_cast<RoutingMethodType>(routing_method_type) == RoutingMethodType::RenormalizeNaive)
{
TORCH_CHECK(top_k == 8, "Current routing kernel (no groups, renormalize) only supports top_k=8.");
}
else if (static_cast<RoutingMethodType>(routing_method_type) == RoutingMethodType::Llama4)
{
TORCH_CHECK(top_k == 1, "Current routing kernel (no groups, Llama4) only supports top_k=1.");
}
TORCH_CHECK(num_experts % 4 == 0, "Routing kernel expects that num_experts must be divisible by 4");
TORCH_CHECK(num_experts > top_k, "num_experts must be greater than top_k");
TORCH_CHECK(num_experts <= 256, "num_experts must be less than or equal to 256");
tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::MoERunnerArgs args;
tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::MoEWorkspace workspace;
// setup args
// note: the assumption is that output data type is always Bfloat16 (the default)
auto const routing_bias_dtype
= routing_bias.has_value() ? routing_bias.value().scalar_type() : at::ScalarType::BFloat16;
args.mDtypeElt = btg::Dtype::E2m1;
args.mDtypeExpW = routing_bias_dtype == at::ScalarType::Float ? btg::Dtype::Fp32 : btg::Dtype::Bfloat16;
args.routing_logits = routing_logits.data_ptr();
args.routing_bias = routing_bias.has_value() ? routing_bias.value().data_ptr() : nullptr;
args.hidden_states = hidden_states.data_ptr();
args.hidden_states_scale = hidden_states_scale.data_ptr();
args.gemm1_weights = gemm1_weights.data_ptr();
args.gemm1_weights_scale = gemm1_weights_scale.data_ptr();
args.gemm2_weights = gemm2_weights.data_ptr();
args.gemm2_weights_scale = gemm2_weights_scale.data_ptr();
args.num_tokens = hidden_states.sizes()[0];
args.num_experts = num_experts;
// * 2 to compensate for the fact that sizeof(hidden_states.dtype) is 1 because we pack 2 e2m1 into 1 byte.
args.hidden_size = hidden_states.sizes()[1] * 2;
args.top_k = top_k;
args.n_group = n_group.value_or(1);
args.topk_group = topk_group.value_or(top_k);
args.local_expert_offset = local_expert_offset;
args.local_num_experts = local_num_experts;
args.routed_scaling_factor = routed_scaling_factor.value_or(1.0);
args.intermediate_size = intermediate_size;
// allocate workspace for routing kernel
at::Tensor num_tokens_per_expert
= at::detail::empty_cuda({num_experts}, at::ScalarType::Int, routing_logits.device(), std::nullopt);
int32_t max_num_padded_tokens
= tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::getMaxPermutedPaddedCount(
args.num_tokens, top_k, num_experts, tile_tokens_dim);
at::Tensor total_num_padded_tokens
= at::empty({}, at::TensorOptions().device(routing_logits.device()).dtype(at::ScalarType::Int));
at::Tensor expanded_idx_to_permuted_idx = at::detail::empty_cuda(
{args.num_tokens, args.top_k}, at::ScalarType::Int, routing_logits.device(), std::nullopt);
at::Tensor permuted_idx_to_token_idx
= at::detail::empty_cuda({max_num_padded_tokens}, at::ScalarType::Int, routing_logits.device(), std::nullopt);
at::Tensor expert_weights = at::detail::empty_cuda(
{args.num_tokens, args.top_k}, routing_bias_dtype, routing_logits.device(), std::nullopt);
at::Tensor expert_indexes = at::detail::empty_cuda(
{args.num_tokens, args.top_k}, at::ScalarType::Int, routing_logits.device(), std::nullopt);
int64_t const size_of_expert_count_histogram = std::max(num_experts * 2, int64_t(256 * 2));
at::Tensor expert_count_histogram = at::detail::empty_cuda({size_of_expert_count_histogram},
at::ScalarType::Int, // 256 is the max number of threads per block and max number of experts
routing_logits.device(), std::nullopt);
// allocate workspace for activation/gemm/finalize kernels
at::Tensor gemm1_output = at::detail::empty_cuda({max_num_padded_tokens, intermediate_size / 2},
at::ScalarType::Float8_e4m3fn, hidden_states.device(), std::nullopt);
at::Tensor gemm1_output_scale = at::detail::empty_cuda({max_num_padded_tokens, intermediate_size / 16},
at::ScalarType::Float8_e4m3fn, hidden_states.device(), std::nullopt);
at::Tensor gemm2_output = at::detail::empty_cuda(
{max_num_padded_tokens, args.hidden_size}, at::ScalarType::BFloat16, hidden_states.device(), std::nullopt);
int32_t max_num_ctas = tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::getMaxNumCtasInBatchDim(
args.num_tokens, args.top_k, args.num_experts, tile_tokens_dim);
at::Tensor cta_idx_xy_to_batch_idx
= at::detail::empty_cuda({max_num_ctas}, at::ScalarType::Int, routing_logits.device(), std::nullopt);
at::Tensor cta_idx_xy_to_mn_limit
= at::detail::empty_cuda({max_num_ctas}, at::ScalarType::Int, routing_logits.device(), std::nullopt);
at::Tensor num_non_exiting_ctas
= at::empty({}, at::TensorOptions().device(routing_logits.device()).dtype(at::ScalarType::Int));
// FIXME: check shape
auto const hidden_states_scale_linear_size
= tensorrt_llm::computeFP4LinearLayoutSFSize(args.num_tokens, args.hidden_size / 16);
at::Tensor hidden_states_scale_linear = at::detail::empty_cuda(
hidden_states_scale_linear_size, at::ScalarType::Float8_e4m3fn, hidden_states.device(), std::nullopt);
//
// TopK routing
//
tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::Runner routing_runner(tile_tokens_dim);
auto const& stream = at::cuda::getCurrentCUDAStream(routing_logits.get_device());
routing_runner.run(args.routing_logits, args.routing_bias, args.num_tokens, args.num_experts, args.top_k,
args.n_group, args.topk_group, args.local_expert_offset, args.local_num_experts, args.routed_scaling_factor,
expert_indexes.data_ptr<int>(), expert_count_histogram.data_ptr<int>(), total_num_padded_tokens.data_ptr<int>(),
expanded_idx_to_permuted_idx.data_ptr<int>(), nullptr, /*permuted_idx_to_expanded_idx.data_ptr<int>(),*/
permuted_idx_to_token_idx.data_ptr<int>(), expert_weights.data_ptr(), num_tokens_per_expert.data_ptr<int>(),
cta_idx_xy_to_batch_idx.data_ptr<int>(), cta_idx_xy_to_mn_limit.data_ptr<int>(),
num_non_exiting_ctas.data_ptr<int>(), args.mDtypeElt, false /* use_routing_scales_on_input */,
false /* use_deep_seek_fp8 */, static_cast<RoutingMethodType>(routing_method_type), stream);
//
// FC13 (gemm1) + FC2 (gemm2)
//
TORCH_CHECK(hidden_states.scalar_type() == FLOAT4_E2M1X2, "hidden_states must be byte.");
TORCH_CHECK(hidden_states_scale.scalar_type() == at::ScalarType::Float8_e4m3fn, "hidden_states_scale must be fp8.");
TORCH_CHECK(hidden_states_scale.dim() == 1, "hidden_states_scale must be 1D.");
TORCH_CHECK(hidden_states_scale.sizes()[0]
== tensorrt_llm::computeFP4LinearLayoutSFSize(args.num_tokens, args.hidden_size / 16),
"hidden_states_scale has incorrect size");
TORCH_CHECK(gemm1_weights.scalar_type() == FLOAT4_E2M1X2, "gemm1_weights must be byte.");
TORCH_CHECK(gemm1_weights.dim() == 3, "gemm1_weights must be 3D.");
TORCH_CHECK(gemm1_weights.sizes()[1] % 2 == 0, "the second dimension of weights must be even.");
TORCH_CHECK(intermediate_size == gemm1_weights.sizes()[1] / 2, "intermediate_size has incorrect dim 1.");
// This check passes even though the actual shape of the weights[2] and hidden_states[1] is
// 2 times larger due to the fact that 2 e2m1 are packed into 1 byte.
TORCH_CHECK(gemm1_weights.sizes()[2] == hidden_states.sizes()[1],
"the third dimension of weights must be equal to hidden_size.");
TORCH_CHECK(gemm1_weights_scale.scalar_type() == at::ScalarType::Float8_e4m3fn, "gemm1_weights_scale must be fp8.");
TORCH_CHECK(gemm1_weights_scale.dim() == 3, "gemm1_weights_scale must be 3D.");
TORCH_CHECK(gemm1_weights_scale.sizes()[0] == local_num_experts, "gemm1_weights_scale has incorrect dim 0.");
TORCH_CHECK(intermediate_size % 16 == 0, "the second dimension of weights must be a multiple of 16.");
TORCH_CHECK(gemm1_weights_scale.sizes()[1] == 2 * intermediate_size, "gemm1_weights_scale has incorrect dim 1.");
TORCH_CHECK(gemm1_weights_scale.sizes()[2] == args.hidden_size / 16, "gemm1_weights_scale has incorrect dim 2.");
TORCH_CHECK(gemm2_weights.scalar_type() == FLOAT4_E2M1X2, "gemm2_weights must be byte.");
TORCH_CHECK(gemm2_weights.dim() == 3, "gemm2_weights must be 3D.");
// / 2 to compensate for the fact that we pack 2 e2m1 into 1 byte.
TORCH_CHECK(gemm2_weights.sizes()[2] == intermediate_size / 2,
"the third dimension of weights must be equal to intermediate_size.");
TORCH_CHECK(gemm2_weights_scale.scalar_type() == at::ScalarType::Float8_e4m3fn, "gemm2_weights_scale must be fp8.");
TORCH_CHECK(gemm2_weights_scale.dim() == 3, "gemm2_weights_scale must be 3D.");
TORCH_CHECK(gemm2_weights_scale.sizes()[0] == local_num_experts, "gemm2_weights_scale has incorrect dim 0.");
TORCH_CHECK(gemm2_weights_scale.sizes()[1] == args.hidden_size, "gemm2_weights_scale has incorrect dim 1.");
TORCH_CHECK(gemm2_weights_scale.sizes()[2] == intermediate_size / 16, "gemm2_weights_scale has incorrect dim 2.");
TORCH_CHECK(output1_scales_scalar.scalar_type() == at::ScalarType::Float, "output1_scales_scalar must be float.");
TORCH_CHECK(output1_scales_scalar.dim() == 1, "output1_scales_scalar must be 1D.");
TORCH_CHECK(output1_scales_scalar.sizes()[0] == local_num_experts, "output1_scales_scalar has incorrect dim 0.");
TORCH_CHECK(
output1_scales_gate_scalar.scalar_type() == at::ScalarType::Float, "output1_scales_gate_scalar must be float.");
TORCH_CHECK(output1_scales_gate_scalar.dim() == 1, "output1_scales_gate_scalar must be 1D.");
TORCH_CHECK(
output1_scales_gate_scalar.sizes()[0] == local_num_experts, "output1_scales_gate_scalar has incorrect dim 0.");
TORCH_CHECK(output2_scales_scalar.scalar_type() == at::ScalarType::Float, "output2_scales_scalar must be float.");
TORCH_CHECK(output2_scales_scalar.dim() == 1, "output2_scales_scalar must be 1D.");
TORCH_CHECK(output2_scales_scalar.sizes()[0] == local_num_experts, "output2_scales_scalar has incorrect dim 0.");
// allocate output
at::Tensor output = at::detail::empty_cuda(
{args.num_tokens, args.hidden_size}, at::ScalarType::BFloat16, hidden_states.device(), std::nullopt);
// setup workspace
workspace.total_num_padded_tokens = total_num_padded_tokens.data_ptr<int>();
workspace.total_max_padded_tokens = max_num_padded_tokens;
workspace.ProjUpTileN = tile_tokens_dim;
workspace.routing_expert_indexes = expert_indexes.data_ptr<int>();
workspace.permuted_idx_size = total_num_padded_tokens.data_ptr<int>();
workspace.expanded_idx_to_permuted_idx
= expanded_idx_to_permuted_idx.data_ptr<int>(); // Needed by permute/finalize kernels
workspace.permuted_idx_to_token_idx = permuted_idx_to_token_idx.data_ptr<int>(); // Needed by permuteGemm1 kernel
workspace.expert_weights = expert_weights.data_ptr(); // Consumed by finalize kernel
workspace.cta_idx_xy_to_batch_idx = cta_idx_xy_to_batch_idx.data_ptr<int>();
workspace.cta_idx_xy_to_mn_limit = cta_idx_xy_to_mn_limit.data_ptr<int>();
workspace.num_non_exiting_ctas = num_non_exiting_ctas.data_ptr<int>();
workspace.hidden_states_scale_linear = hidden_states_scale_linear.data_ptr();
// gemm1 intermediate ws
workspace.gemm1_output = gemm1_output.data_ptr();
workspace.gemm1_output_scale = reinterpret_cast<float*>(gemm1_output_scale.data_ptr());
// gemm2 intermediate ws
workspace.gemm2_output = gemm2_output.data_ptr();
workspace.gemm2_output_scale = nullptr;
args.output = output.data_ptr();
args.output_scale = nullptr;
args.output1_scales_scalar = output1_scales_scalar.data_ptr<float>();
args.output1_scales_gate_scalar = output1_scales_gate_scalar.data_ptr<float>();
args.output2_scales_scalar = output2_scales_scalar.data_ptr<float>();
args.do_finalize = do_finalize;
auto const workspace_sizes = moe_runner.getWorkspaceSizeInBytes(args, moeConfigIndex);
at::Tensor workspace_fc1 = at::detail::empty_cuda(
{std::get<0>(workspace_sizes)}, at::ScalarType::Char, hidden_states.device(), std::nullopt);
at::Tensor workspace_fc2 = at::detail::empty_cuda(
{std::get<1>(workspace_sizes)}, at::ScalarType::Char, hidden_states.device(), std::nullopt);
workspace.bmm1_workspace = workspace_fc1.data_ptr();
workspace.bmm2_workspace = workspace_fc2.data_ptr();
auto const& moe_stream = at::cuda::getCurrentCUDAStream(hidden_states.get_device());
moe_runner.run(args, workspace, hidden_states.get_device(), moe_stream, moeConfigIndex);
if (!do_finalize)
{
return {gemm2_output, expert_weights, expanded_idx_to_permuted_idx};
}
return {output};
}
// Wrapped the TRTLLM-Gen kernel runner in a Torch custom class to allow
// use with the torch workflow autotuner class.
class FP4BlockScaleMoeRunner : public torch::CustomClassHolder
{
public:
explicit FP4BlockScaleMoeRunner(int64_t tileTokensDim)
: mTileTokensDim(tileTokensDim)
{
mRunner = std::make_unique<RunnerType>(mDtypeElt, mUseDeepSeekFp8, mTileTokensDim);
}
[[nodiscard]] std::vector<torch::Tensor> run(torch::Tensor const& routing_logits,
torch::optional<torch::Tensor> const& routing_bias, torch::Tensor const& hidden_states,
torch::Tensor const& hidden_states_scale, torch::Tensor const& gemm1_weights,
torch::Tensor const& gemm1_weights_scale, torch::Tensor const& gemm2_weights,
torch::Tensor const& gemm2_weights_scale, torch::Tensor const& output1_scales_scalar,
torch::Tensor const& output1_scales_gate_scalar, torch::Tensor const& output2_scales_scalar,
int64_t const num_experts, int64_t const top_k, std::optional<int64_t> const n_group,
std::optional<int64_t> const topk_group, int64_t const intermediate_size, int64_t const local_expert_offset,
int64_t const local_num_experts, std::optional<double> const routed_scaling_factor,
int64_t const routing_method_type, bool const do_finalize, int64_t moeConfigIndex)
{
// Autotuner has requested a default or 'fallback' config index
if (moeConfigIndex == -1)
{
auto const num_tokens = hidden_states.sizes()[0];
// 2x FP4 per byte element
auto const hidden_size = 2 * hidden_states.sizes()[1];
moeConfigIndex = mRunner->getDefaultValidConfigIndex(
top_k, hidden_size, intermediate_size, local_num_experts, num_tokens);
}
return run_fp4_block_scale_moe_runner(routing_logits, routing_bias, hidden_states, hidden_states_scale,
gemm1_weights, gemm1_weights_scale, gemm2_weights, gemm2_weights_scale, output1_scales_scalar,
output1_scales_gate_scalar, output2_scales_scalar, num_experts, top_k, n_group, topk_group,
intermediate_size, local_expert_offset, local_num_experts, routed_scaling_factor, mTileTokensDim,
routing_method_type, do_finalize, *mRunner, moeConfigIndex);
}
[[nodiscard]] std::vector<int64_t> getValidConfigs(
int64_t topK, int64_t hiddenSize, int64_t intermediateSize, int64_t numLocalExperts, int64_t numTokens) const
{
return mRunner->getValidConfigIndices(topK, hiddenSize, intermediateSize, numLocalExperts, numTokens);
}
private:
using RunnerType = tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::Runner;
std::unique_ptr<RunnerType> mRunner;
btg::Dtype mDtypeElt{btg::Dtype::E2m1};
bool mUseDeepSeekFp8{false};
int64_t mTileTokensDim;
};
torch::Tensor shuffleMatrix(torch::Tensor matrix, torch::Tensor permuteIndices)
{
return torch::index_select(matrix, 0, permuteIndices);
}
} // namespace torch_ext
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.class_<torch_ext::FP4BlockScaleMoeRunner>("FP4BlockScaleMoERunner")
.def(torch::init<int64_t>())
.def("get_valid_configs", &torch_ext::FP4BlockScaleMoeRunner::getValidConfigs)
.def("run_moe", &torch_ext::FP4BlockScaleMoeRunner::run);
}
// Accepts both CPU and CUDA tensors
static auto shuffle_matrix = torch::RegisterOperators("trtllm::shuffle_matrix", &torch_ext::shuffleMatrix);