TensorRT-LLMs/tensorrt_llm/_torch/distributed/ops.py
Yukun He cbca6505ff
[nvbugs/5268808][fix] Fix the list-out-of-range access issue of AllReduce workspace on multi-node. (#4159)
This issue is found for tp=ep=8 on the multi-node machine due to the inconsistent PP sizes.
* Reform the workspace allocation implementation to avoid the list-out-of-range issues.
* Disable min_latency_mode under the multi-node scenario to avoid the illegal memory access issue.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
2025-05-13 17:17:25 +08:00

264 lines
9.7 KiB
Python

import threading
from typing import Optional, Tuple, Union
import torch
from torch import nn
from tensorrt_llm.functional import AllReduceParams, AllReduceStrategy
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.plugin.plugin import CustomAllReduceHelper
_thread_local = threading.local()
def get_allreduce_workspace(mapping: Mapping) -> torch.LongTensor:
if not hasattr(_thread_local, f'allreduce_workspaces_{mapping.pp_rank}'):
setattr(_thread_local, f'allreduce_workspaces_{mapping.pp_rank}', {})
allreduce_workspaces = getattr(_thread_local,
f'allreduce_workspaces_{mapping.pp_rank}')
if mapping not in allreduce_workspaces:
ipc_buffers, workspace = CustomAllReduceHelper.allocate_allreduce_fusion_workspace(
mapping,
CustomAllReduceHelper.max_workspace_size_auto(
mapping.tp_size, support_deterministic=False),
)
allreduce_workspaces[mapping] = (ipc_buffers, workspace)
return allreduce_workspaces[mapping][1]
def userbuffers_allreduce_finalize(
input: torch.Tensor,
force_applying_finalize: bool = False) -> torch.Tensor:
output = torch.ops.trtllm.userbuffers_allreduce_finalize(
input, force_applying_finalize)
return output
def allgather(input: torch.Tensor,
mapping: Mapping,
gather_dim: int = -1) -> torch.Tensor:
'''
Add an operation that performs a collective all-gather.
The input tensors in the different ranks must have the same shape.
The output tensor will be replicated among the TP group.
Given the 'section_size = input.shape[gather_dim]', each rank
contributes a section of its input tensor that correspond to
'rank*section_size:(rank+1)*section_size',
and 'output.shape[gather_dim] = input.shape[gather_dim] * tp_group_size'.
That operation is implemented using a torch op that wraps the NCCL all-gather
collective operation. See
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#allgather
for details.
Args:
input (Tensor): The input tensor.
mapping (Mapping): The parallel mapping.
gather_dim (int): Gather along given dimension. By default -1.
Returns:
The gathered tensor.
'''
if mapping.tp_size == 1:
return input
output = torch.ops.trtllm.allgather(
input,
mapping.tp_group,
)
if gather_dim < 0:
gather_dim += input.ndim
output = torch.movedim(output, 0, gather_dim)
input_shape = input.size()
output = output.reshape(input_shape[:gather_dim] +
(mapping.tp_size * input_shape[gather_dim], ) +
input_shape[gather_dim + 1:])
return output
def reducescatter(input: torch.Tensor,
mapping: Mapping,
scatter_dim: int = -1) -> torch.Tensor:
if mapping.tp_size == 1:
return input
output = torch.ops.trtllm.reducescatter(
input,
mapping.tp_group,
)
if scatter_dim < 0:
scatter_dim += input.ndim
output = torch.movedim(output, 0, scatter_dim)
input_shape = input.size()
output = output.reshape(input_shape[:scatter_dim] +
(input_shape[scatter_dim] // mapping.tp_size, ) +
input_shape[scatter_dim + 1:])
return output
class AllReduce(nn.Module):
def __init__(self,
mapping: Mapping,
strategy: AllReduceStrategy = AllReduceStrategy.AUTO):
super().__init__()
"""
AllReduce is a module that performs an all-reduce operation on a tensor.
Args:
mapping (Mapping): The parallel mapping config.
strategy (AllReduceStrategy):
Three types of all-reduce strategies are supported:
- UB: AllReduce uses user-buffer based all-reduce kernel. Supported ops:
- RESIDUAL_RMS_NORM
- RESIDUAL_RMS_NORM_QUANT_FP8
- RESIDUAL_RMS_NORM_QUANT_NVFP4
- NCCL: AllReduce delegates all-reduce to NCCL MIN_LATENCY mode kernel. Supported ops:
- NONE (AllReduce only)
- RESIDUAL_RMS_NORM
- MIN_LATENCY: AllReduce uses MIN_LATENCY mode kernel. Supported ops:
- NONE (AllReduce only)
- RESIDUAL_RMS_NORM
- RESIDUAL_RMS_NORM_QUANT_FP8
- RESIDUAL_RMS_NORM_QUANT_NVFP4
- RESIDUAL_RMS_NORM_OUT_QUANT_FP8
- RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4
- AUTO: AUTO chooses between NCCL and MIN_LATENCY mode based on a heuristic policy.
Note:
For the reference implementation for each pattern, please refer to the following unit test:
https://github.com/NVIDIA/TensorRT-LLM/blob/main/tests/unittest/_torch/multi_gpu/test_allreduce.py
"""
self.mapping = mapping
self.workspace = None
self.strategy = strategy
if self.mapping.tp_size > 1:
# When Strategy is UB, it is guaranteed that the workspace is not used.
if self.strategy != AllReduceStrategy.UB:
self.workspace = get_allreduce_workspace(self.mapping)
def forward(
self,
input: torch.Tensor,
*,
all_reduce_params: Optional[AllReduceParams] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
'''
The input tensors in the different ranks must have the same shape.
The output tensor will have that same shape with the input tensor.
The output tensor will be replicated among the TP group.
Note that it is not an in-place operation like torch.distributed.all_reduce.
That operation is implemented using a torch op that wraps the NCCL all-reduce
collective operation and custom one-shot/two-shot allreduce kernels. See
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#allreduce
for details.
Args:
input (Tensor): The input tensor.
all_reduce_params (AllReduceParams): The parameters for the fused ops into the allreduce op.
Returns:
A tensor lists with different tensor outptus according to the fusion_op.
NONE: [hidden_states]
RESIDUAL_RMS_NORM: [hidden_states, residual]
RESIDUAL_RMS_NORM_QUANT_FP8: [norm_quant, residual]
RESIDUAL_RMS_NORM_OUT_QUANT_FP8: [norm, norm_quant, residual]
RESIDUAL_RMS_NORM_QUANT_NVFP4: [norm_quant_fp4, scale_factor, residual]
RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4: [norm, norm_quant_fp4, scale_factor, residual]
'''
if self.mapping.tp_size == 1 or (all_reduce_params is not None
and all_reduce_params.enable_allreduce
== False):
return input
# Assume using no fusion allreduce here
if all_reduce_params is None:
all_reduce_params = AllReduceParams()
output = torch.ops.trtllm.allreduce(
input=input,
residual=all_reduce_params.residual,
norm_weight=all_reduce_params.norm_weight,
scale=all_reduce_params.scale,
bias=all_reduce_params.bias,
workspace=self.workspace,
group=self.mapping.tp_group,
strategy=self.strategy,
op=all_reduce_params.fusion_op,
eps=all_reduce_params.eps,
)
return output if len(output) > 1 else output[0]
class MoEAllReduce(nn.Module):
def __init__(self, mapping: Mapping):
"""
MoEAllReduce is a module that performs a specific fused MoE reduction
followed by a regular AR + RMS norm.
Args:
mapping (Mapping): The parallel mapping config.
Notes:
Support pattern: MoE Reduction + Add + AR + ADD_RMS, see this torch reference implementation:
expert_reduction = torch.sum(active_experts_token_input *
scale.unsqueeze(-1),
dim=0)
output_add = expert_reduction + shared_expert_output
output_residual = output_add + residual
output_hidden_states = rms_norm(output_residual, norm_weight, eps)
"""
super().__init__()
self.mapping = mapping
self.workspace = get_allreduce_workspace(self.mapping)
def forward(
self,
residual: torch.Tensor,
norm_weight: torch.Tensor,
device_num_experts: torch.Tensor,
scale_input: torch.Tensor,
active_experts_token_input: torch.Tensor,
token_input: torch.Tensor,
eps: float,
) -> torch.Tensor:
"""
Args:
residual: residual tensor
norm_weight: RMS norm weight
device_num_experts: number of experts per device
scale_input: experts to token score
active_experts_token_input: per token per expert input
token_input: per token input, shared expert output
eps: epsilon for RMSNorm
Output:
hidden_states: hidden_states of the model
residual: residual tensor
"""
return torch.ops.trtllm.moe_allreduce(
residual=residual,
norm_weight=norm_weight,
device_num_experts=device_num_experts,
scale_input=scale_input,
active_experts_token_input=active_experts_token_input,
token_input=token_input,
workspace=self.workspace,
rank=self.mapping.tp_rank,
nranks=self.mapping.tp_size,
eps=eps,
)