TensorRT-LLMs/examples/layer_wise_benchmarks/parse.py
Tailing Yuan 51ef0379d2
[None][feat] Add a parser to layer-wise benchmarks (#9440)
Signed-off-by: Tailing Yuan <yuantailing@gmail.com>
2025-11-25 05:45:16 -08:00

450 lines
17 KiB
Python

import argparse
import bisect
import csv
import json
import re
import sqlite3
import subprocess
from pathlib import Path
import jinja2
import numpy as np
import pandas as pd
# Parse cmdline
parser = argparse.ArgumentParser()
parser.add_argument("--profile-dir", type=str, default="profiles")
parser.add_argument("--world-size", "--np", type=int)
parser.add_argument("--rank", type=int, default=0)
parser.add_argument("--warmup-times", type=int)
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument("--error-on-unknown-kernel", action="store_true", dest="error_on_unknown_kernel")
group.add_argument(
"--no-error-on-unknown-kernel", action="store_false", dest="error_on_unknown_kernel"
)
parser.set_defaults(error_on_unknown_kernel=None)
args = parser.parse_args()
print(args)
def lazy_convert_sqlite(nsys_rep_file_path, sqlite_file_path):
if (
not sqlite_file_path.is_file()
or nsys_rep_file_path.stat().st_mtime > sqlite_file_path.stat().st_mtime
):
subprocess.check_call(
[
"nsys",
"export",
"--type",
"sqlite",
"-o",
sqlite_file_path,
"--force-overwrite=true",
nsys_rep_file_path,
]
)
def shortest_common_supersequence(a, b):
# Merge two lists into their shortest common supersequence,
# so that both `a` and `b` are subsequences of the result.
# Uses dynamic programming to compute the shortest common supersequence, then reconstructs it.
m, n = len(a), len(b)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m + 1):
dp[i][0] = i
for j in range(n + 1):
dp[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if a[i - 1] == b[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1)
# Backtrack to build the merged sequence
res = []
i, j = m, n
while i > 0 and j > 0:
if a[i - 1] == b[j - 1]:
res.append(a[i - 1])
i -= 1
j -= 1
elif dp[i - 1][j] < dp[i][j - 1]:
res.append(a[i - 1])
i -= 1
else:
res.append(b[j - 1])
j -= 1
while i > 0:
res.append(a[i - 1])
i -= 1
while j > 0:
res.append(b[j - 1])
j -= 1
res.reverse()
return res
profile_dir = Path(args.profile_dir)
nsys_rep_file_path = profile_dir / f"report_np{args.world_size}_rank{args.rank}.nsys-rep"
sqlite_file_path = profile_dir / f"report_np{args.world_size}_rank{args.rank}.sqlite"
csv_file_path = profile_dir / f"report_np{args.world_size}_rank{args.rank}.csv"
html_file_path = profile_dir / f"report_np{args.world_size}_rank{args.rank}.html"
lazy_convert_sqlite(nsys_rep_file_path, sqlite_file_path)
conn = sqlite3.connect(f"file:{sqlite_file_path}?mode=ro", uri=True)
query = "SELECT * FROM ENUM_NSYS_EVENT_TYPE"
df = pd.read_sql_query(query, conn)
event_id_NvtxDomainCreate = df[df["name"] == "NvtxDomainCreate"].iloc[0]["id"].tolist()
event_id_NvtxPushPopRange = df[df["name"] == "NvtxPushPopRange"].iloc[0]["id"].tolist()
query = "SELECT domainId FROM NVTX_EVENTS WHERE eventType = ? AND text = ?"
df = pd.read_sql_query(query, conn, params=(event_id_NvtxDomainCreate, "NCCL"))
nccl_domain_id = -1 if df.empty else df.iloc[0]["domainId"].tolist()
query = """SELECT T1.start, T2.value AS text
FROM NVTX_EVENTS AS T1
JOIN StringIds AS T2 ON T1.textId = T2.id
WHERE eventType = ? AND T2.value LIKE ?"""
df = pd.read_sql_query(query, conn, params=(event_id_NvtxPushPopRange, "layer_wise_benchmarks %"))
problem_start = []
problem_set = []
for start, text in df.itertuples(index=False):
if text.startswith("layer_wise_benchmarks args {"):
run_args = json.loads(text[len("layer_wise_benchmarks args") :])
elif text.startswith("layer_wise_benchmarks problem_spec {"):
problem_start.append(start)
problem_set.append(
{
"spec": json.loads(text[len("layer_wise_benchmarks problem_spec") :]),
"text": "",
"runs": [],
"runs_end": [],
"ranges": [],
}
)
query = """SELECT T1.start, T1.end, T2.value AS text
FROM NVTX_EVENTS AS T1
JOIN StringIds AS T2 ON T1.textId = T2.id
WHERE eventType = ? AND T2.value NOT LIKE ? AND T2.value NOT LIKE ? AND domainId != ?"""
df = pd.read_sql_query(
query,
conn,
params=(event_id_NvtxPushPopRange, "layer_wise_benchmarks %", "[DG]%", nccl_domain_id),
)
for start, end, text in df.itertuples(index=False):
problem_id = bisect.bisect(problem_start, start) - 1
assert problem_id != -1
if re.match(r"b=\d+ s=\d+ ", text):
problem_set[problem_id]["text"] = text
problem_set[problem_id]["runs"].append(start)
problem_set[problem_id]["runs_end"].append(end)
else:
problem_set[problem_id]["ranges"].append((start, end, text))
query = """SELECT name FROM sqlite_master WHERE type = ?"""
df = pd.read_sql_query(query, conn, params=("table",))
tables = df["name"].tolist()
unified_subquery = """SELECT T1.start, T1.end, T1.demangledName, T1.correlationId, T1.graphNodeId
FROM CUPTI_ACTIVITY_KIND_KERNEL AS T1"""
if "CUPTI_ACTIVITY_KIND_MEMCPY" in tables:
unified_subquery += """ UNION ALL
SELECT T2.start, T2.end, -2 AS demangledName, T2.correlationId, T2.graphNodeId
FROM CUPTI_ACTIVITY_KIND_MEMCPY AS T2"""
if "CUPTI_ACTIVITY_KIND_MEMSET" in tables:
unified_subquery += """ UNION ALL
SELECT T3.start, T3.end, -3 AS demangledName, T3.correlationId, T3.graphNodeId
FROM CUPTI_ACTIVITY_KIND_MEMSET AS T3"""
query = f"""SELECT unified.start, unified.end, unified.demangledName,
R.start AS runtime_start, R.end AS runtime_end,
CGE2.start AS capture_start, CGE2.end AS capture_end
FROM ({unified_subquery}) AS unified
JOIN CUPTI_ACTIVITY_KIND_RUNTIME AS R ON unified.correlationId = R.correlationId
LEFT JOIN CUDA_GRAPH_NODE_EVENTS AS CGE1 ON unified.graphNodeId = CGE1.graphNodeId AND
CGE1.originalGraphNodeId IS NOT NULL
LEFT JOIN CUDA_GRAPH_NODE_EVENTS AS CGE2 ON CGE1.originalGraphNodeId = CGE2.graphNodeId"""
df = pd.read_sql_query(query, conn)
kernel_list = []
for (
start,
end,
demangledName,
runtime_start,
runtime_end,
capture_start,
capture_end,
) in df.itertuples(index=False):
problem_id = bisect.bisect(problem_start, start) - 1
run_id = bisect.bisect(problem_set[problem_id]["runs"], runtime_start) - 1
if (
run_id == -1
or run_id == len(problem_set[problem_id]["runs"])
or runtime_start >= problem_set[problem_id]["runs_end"][run_id]
):
run_id = -1
ranges = [
text
for range_start, range_end, text in problem_set[problem_id]["ranges"]
if capture_start >= range_start and capture_end <= range_end
]
kernel_list.append(
(
problem_id,
run_id,
ranges,
start,
end,
demangledName,
runtime_start,
runtime_end,
capture_start,
capture_end,
)
)
# TODO: Parse CTX phases
query = "SELECT * FROM StringIds"
df = pd.read_sql_query(query, conn)
string_ids = dict(zip(df["id"], df["value"]))
conn.close()
kernel_list.sort(key=lambda t: (t[6], t[8]))
kernels = [[[] for _ in problem["runs"]] for problem in problem_set]
for (
problem_id,
run_id,
ranges,
start,
end,
demangledName,
runtime_start,
runtime_end,
capture_start,
capture_end,
) in kernel_list:
if run_id != -1:
kernels[problem_id][run_id].append((demangledName, start, end, ranges))
for problem_id in range(len(kernels)):
required_seq = [demangledName for demangledName, _, _, _ in kernels[problem_id][0]]
for run_id in range(len(kernels[problem_id])):
seq = [demangledName for demangledName, _, _, _ in kernels[problem_id][run_id]]
assert seq == required_seq
parser_keywords = [
("cuBLASGemm", "nvjet"),
("splitKreduce", "splitKreduce_kernel"),
("fusedAGemm", "fused_a_gemm_kernel"),
("RMSNorm", "RMSNormKernel"),
("torchCat", "CatArrayBatchedCopy"),
("applyMLARope", "applyMLARope"),
("fmhaSm100f", "fmhaSm100fKernel_Qkv"),
("fmhaReduction", "fmhaReductionKernel"),
("quant", "quantize_with_block_size"),
("AllGather", "ncclDevKernel_AllGather_"),
("ReduceScatter", "ncclDevKernel_ReduceScatter_"),
("allreduce_oneshot", "allreduce_fusion_kernel_oneshot_lamport"),
("allreduce_twoshot", "allreduce_fusion_kernel_twoshot_sync"),
("expandInput", "expandInputRowsKernel"),
("computeStrides", "computeStridesTmaWarpSpecializedKernel"),
("cutlassGroupGemm", "cutlass::device_kernel<cutlass::gemm::kernel::GemmUniversal"),
("doActivation", "doActivationKernel"),
("cutlassGemm", "GemmUniversal"),
("deepseek_v3_topk", "deepseek_v3_topk_kernel"),
("CountAndIndice", "computeCountAndIndiceDevice"),
("Cumsum", "computeCumsumDevice"),
("moveIndice", "moveIndiceDevice"),
("moeAllToAll", "moeAllToAllKernel"),
("moeA2APrepareDispatch", "moe_comm::moeA2APrepareDispatchKernel"),
("moeA2ADispatch", "moe_comm::moeA2ADispatchKernel"),
("moeA2ASanitizeExpertIds", "moe_comm::moeA2ASanitizeExpertIdsKernel"),
("moeA2APrepareCombine", "moe_comm::moeA2APrepareCombineKernel"),
("moeA2ACombine", "moe_comm::moeA2ACombineKernel"),
("memsetExpertIds", "memsetExpertIdsDevice"),
("blockSum", "blockExpertPrefixSumKernel"),
("globalSum", "globalExpertPrefixSumKernel"),
("mergePrefix", "mergeExpertPrefixSumKernel"),
("fusedBuildExpertMaps", "fusedBuildExpertMapsSortFirstTokenKernel"),
("swiglu", "silu_and_mul_kernel"),
("torchAdd", "CUDAFunctor_add"),
("torchFill", "at::native::FillFunctor"),
("triton_fused_add_sum", "triton_red_fused_add_sum_0"),
("torchCopy", "at::native::bfloat16_copy_kernel_cuda"),
("torchDistribution", "distribution_elementwise_grid_stride_kernel"),
("torchArange", "at::native::arange_cuda_out"),
("torchDirectCopy", "at::native::direct_copy_kernel_cuda"),
("torchBitonicSort", "at::native::bitonicSortKVInPlace"),
("routingInitExpertCounts", "routingInitExpertCounts"),
("routingIndicesCluster", "routingIndicesClusterKernel"),
("routingIndicesCoop", "routingIndicesCoopKernel"),
("bmm_4_44_32", "bmm_E2m1_E2m1E2m1_Fp32_t"),
("finalize", "finalize::finalizeKernel"),
("bmm_16_44_32", "bmm_Bfloat16_E2m1E2m1_Fp32_"),
("deep_gemm_gemm", "deep_gemm::sm100_fp8_gemm_1d1d_impl<"),
("per_token_quant", "_per_token_quant_and_transform_kernel"),
("triton_fused_layer_norm", "triton_per_fused__to_copy_native_layer_norm_0"),
("flashinferRoPE", "flashinfer::BatchQKApplyRotaryPosIdsCosSinCacheHeadParallelismKernel<"),
("fp8_blockscale_gemm", "tensorrt_llm::kernels::fp8_blockscale_gemm"),
("triton_fused_mul_squeeze", "triton_poi_fused_mul_squeeze_0"),
("indexerKCacheScatter", "tensorrt_llm::kernels::indexerKCacheScatterUnifiedKernel"),
("deep_gemm_mqa_logits", "deep_gemm::sm100_fp8_paged_mqa_logits<"),
("topKPerRowDecode", "tensorrt_llm::kernels::topKPerRowDecode<"),
("torchAdd<int>", "at::native::CUDAFunctorOnSelf_add"),
("convert_req_index", "_convert_req_index_to_global_index_kernel_with_stride_factor"),
("preprocess_after_permute", "_preprocess_after_permute_kernel"),
("masked_index_copy_quant", "_masked_index_copy_group_quant_fp8"),
("swiglu_quant", "_silu_and_mul_post_quant_kernel"),
("masked_index_gather", "masked_index_gather_kernel"),
("finalizeMoeRouting", "tensorrt_llm::kernels::cutlass_kernels::finalizeMoeRoutingKernel<"),
("fused_qkvzba_split", "fused_qkvzba_split_reshape_cat_kernel"),
("causal_conv1d_update", "tensorrt_llm::kernels::causal_conv1d::causal_conv1d_update_kernel<"),
("fused_delta_rule_update", "fused_sigmoid_gating_delta_rule_update_kernel"),
("layer_norm_fwd_1pass", "_layer_norm_fwd_1pass_kernel"),
("torchGatherTopK", "at::native::sbtopk::gatherTopK<"),
("softmax_warp_forward", "softmax_warp_forward<"),
("torchSigmoid", "at::native::sigmoid_kernel_cuda"),
("torchMul", "at::native::binary_internal::MulFunctor<"),
("applyBiasRopeUpdateKVCache", "tensorrt_llm::kernels::applyBiasRopeUpdateKVCacheV2<"),
("routingIndicesHistogramScores", "routingRenormalize::routingIndicesHistogramScoresKernel<"),
("routingIndicesHistogram", "routingIndicesHistogramKernel<"),
("routingIndicesOffsets", "routingIndicesOffsetsKernel<"),
("torchReduceSum", ["at::native::reduce_kernel<", "at::native::sum_functor<"]),
("CuteDSLMoePermute", "cute_dsl::moePermuteKernel"),
(
"CuteDSLGroupedGemmSwiglu",
["cute_dsl_kernels", "blockscaled_contiguous_grouped_gemm_swiglu_fusion"],
),
(
"CuteDSLGroupedGemmFinalize",
["cute_dsl_kernels", "blockscaled_contiguous_grouped_gemm_finalize_fusion"],
),
]
warned_names = set()
def parse_kernel_name(demangledName):
if demangledName == -2:
return "Memcpy"
if demangledName == -3:
return "Memset"
name = string_ids[demangledName]
for dst, src in parser_keywords:
if not isinstance(src, (tuple, list)):
src = [src]
if all(keyword in name for keyword in src):
return dst
if name not in warned_names:
print(f"Unknown kernel name: {name}")
warned_names.add(name)
if args.error_on_unknown_kernel:
raise NotImplementedError(f"Unknown kernel name: {name}")
return name[:30]
converted_seqs = []
for runs in kernels:
warmup_times = run_args["warmup_times"] if args.warmup_times is None else args.warmup_times
converted_seq = []
# Kernel time
for i, (demangledName, _, _, ranges) in enumerate(runs[0]):
name = parse_kernel_name(demangledName)
category = (*ranges, name)
time_list = [run[i][2] - run[i][1] for run in runs]
t = np.mean(time_list[warmup_times:]).tolist()
converted_seq.append((category, t))
# Space and Overlap
overlap_list = []
space_list = []
for run in runs:
sorted_run = sorted(run, key=lambda op: op[1])
last_end = sorted_run[0][1]
overlap_time = 0
space_time = 0
for _, start, end, _ in sorted_run:
if start > last_end:
space_time += start - last_end
else:
overlap_time += min(last_end, end) - start
last_end = max(last_end, end)
overlap_list.append(-overlap_time)
space_list.append(space_time)
converted_seq.append((("Overlap",), np.mean(overlap_list[warmup_times:]).tolist()))
converted_seq.append((("Space",), np.mean(space_list[warmup_times:]).tolist()))
converted_seq.append((("Total",), sum(t for _, t in converted_seq)))
converted_seqs.append(converted_seq)
merged_title = []
for converted_seq in converted_seqs:
title = [name for name, _ in converted_seq]
merged_title = shortest_common_supersequence(merged_title, title)
merged_data = [[0.0] * len(problem_set) for _ in merged_title]
for problem_id, converted_seq in enumerate(converted_seqs):
cur = 0
for category, t in converted_seq:
cur = merged_title.index(category, cur)
merged_data[cur][problem_id] = t
cur += 1
print("Problem set:")
for problem in problem_set:
print(
f'- "{problem["text"]}" {len(problem["runs"])} runs'
f" Ranges: [{', '.join(text for _, _, text in problem['ranges'])}]"
)
stack = []
csv_data = [["", *[problem["text"] for problem in problem_set]]]
js_data = []
js_stack = [js_data]
max_title_len = max((len(title) - 1) * 3 + len(title[-1]) for title in merged_title)
for title, time_data in zip(merged_title, merged_data):
while stack != list(title[: len(stack)]):
level_title = stack[-1]
stack.pop()
js_stack[-2].append(
{
"name": level_title,
"children": js_stack[-1],
}
)
js_stack.pop()
while len(stack) != len(title) - 1:
level_title = title[len(stack)]
stack.append(level_title)
level = len(stack)
print("|--" * (level - 1) + level_title)
csv_data.append(["|--" * (level - 1) + level_title])
js_stack.append([])
level = len(stack) + 1
print(
"|--" * (level - 1) + title[-1] + " " * (max_title_len - (level - 1) * 3 - len(title[-1])),
*[f"{x / 1000:-6.1f}" for x in time_data],
)
csv_data.append(["|--" * (level - 1) + title[-1], *[f"{x / 1000:.1f}" for x in time_data]])
if title != ("Total",):
js_stack[-1].append(
{
"name": title[-1],
"time": [x / 1000 for x in time_data],
}
)
# TODO: Group repeated modules
with csv_file_path.open("w", newline="") as f:
csv_writer = csv.writer(f, quoting=csv.QUOTE_MINIMAL)
for row in csv_data:
csv_writer.writerow(row)
js_header_config = [{"name": problem["text"]} for problem in problem_set]
loader = jinja2.FileSystemLoader(Path(__file__).parent)
template = jinja2.Environment(loader=loader).get_template("template.html")
with html_file_path.open("w") as f:
f.write(
template.render(
headerConfig=js_header_config, rawData=js_data, runArgs=json.dumps(run_args, indent=4)
)
)