TensorRT-LLMs/cpp/tensorrt_llm/thop/dsv3FusedAGemmOp.cpp
Yihan Wang 9df4dad3b6
[None][fix] Introduce inline namespace to avoid symbol collision (#9541)
Signed-off-by: Yihan Wang <yihwang@nvidia.com>
2025-12-12 23:32:15 +08:00

101 lines
3.7 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/opUtils.h"
#include "tensorrt_llm/kernels/dsv3MinLatencyKernels/dsv3FusedAGemm.h"
#include "tensorrt_llm/runtime/torchUtils.h"
#include "tensorrt_llm/thop/cublasScaledMM.h"
namespace th = torch;
namespace tl = tensorrt_llm;
namespace tk = tensorrt_llm::kernels;
TRTLLM_NAMESPACE_BEGIN
namespace torch_ext
{
th::Tensor dsv3_fused_a_gemm_op(th::Tensor const& mat_a, th::Tensor const& mat_b, std::optional<at::Tensor> const& bias,
std::optional<c10::ScalarType> const& out_dtype)
{
int const num_tokens = mat_a.sizes()[0];
int const hd_in = mat_a.sizes()[1];
int const hd_out = mat_b.sizes()[1];
// auto const out_dtype_ = out_dtype.value_or(mat_a.scalar_type());
auto const out_dtype_ = out_dtype.value_or(mat_a.scalar_type());
auto const data_type = mat_a.scalar_type();
constexpr int kHdIn = 7168;
constexpr int kHdOut = 2112;
std::vector<int64_t> output_size = {num_tokens, hd_out};
th::Tensor out = th::empty(output_size, mat_a.options().dtype(out_dtype_));
TORCH_CHECK(mat_a.dim() == 2 && mat_b.dim() == 2);
TORCH_CHECK(mat_a.strides()[1] == 1 && out.strides()[1] == 1); // Row-major
TORCH_CHECK(mat_b.strides()[0] == 1); // Column-major
TORCH_CHECK(!bias.has_value(), "bias is not support yet");
auto const sm = tensorrt_llm::common::getSMVersion();
if (sm >= 90)
{
bool use_custom_kernel = false;
if (num_tokens >= 1 && num_tokens <= 16 && hd_in == kHdIn && hd_out == kHdOut && data_type == torch::kBFloat16
&& out_dtype_ == torch::kBFloat16)
{
use_custom_kernel = true;
}
if (use_custom_kernel)
{
auto stream = at::cuda::getCurrentCUDAStream(mat_a.get_device());
if (num_tokens <= 8)
{
tk::dsv3MinLatencyKernels::invokeFusedAGemm<__nv_bfloat16, kHdIn, kHdOut, 8>(
reinterpret_cast<__nv_bfloat16*>(out.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16 const*>(mat_a.data_ptr()),
reinterpret_cast<__nv_bfloat16 const*>(mat_b.data_ptr()), num_tokens, stream);
}
else
{
tk::dsv3MinLatencyKernels::invokeFusedAGemm<__nv_bfloat16, kHdIn, kHdOut, 16>(
reinterpret_cast<__nv_bfloat16*>(out.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16 const*>(mat_a.data_ptr()),
reinterpret_cast<__nv_bfloat16 const*>(mat_b.data_ptr()), num_tokens, stream);
}
}
else
{
cublas_mm_out(mat_a, mat_b, bias, out);
}
}
else
{
cublas_mm_out(mat_a, mat_b, bias, out);
}
return out;
}
} // namespace torch_ext
TRTLLM_NAMESPACE_END
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def("dsv3_fused_a_gemm_op(Tensor mat_a, Tensor mat_b, Tensor? bias, ScalarType? out_dtype) -> (Tensor out)");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("dsv3_fused_a_gemm_op", &tensorrt_llm::torch_ext::dsv3_fused_a_gemm_op);
}