TensorRT-LLMs/tensorrt_llm/models/unet/embeddings.py
Guoming Zhang 202bed4574 [None][chroe] Rename TensorRT-LLM to TensorRT LLM for source code. (#7851)
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>
2025-09-25 21:02:35 +08:00

118 lines
3.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import tensorrt as trt
from ..._utils import fp16_array, fp32_array
from ...functional import concat, constant, cos, exp, silu, sin
from ...layers import Linear
from ...module import Module
def get_timestep_embedding(timesteps,
embedding_dim,
flip_sin_to_cos=False,
downscale_freq_shift=1.0,
scale=1.0,
max_period=10000,
dtype=None):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert timesteps.rank() == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = [
i * -math.log(max_period) / (half_dim - downscale_freq_shift)
for i in range(half_dim)
]
if dtype == trt.DataType.HALF:
emb = exp(constant(fp16_array(exponent)))
else:
emb = exp(constant(fp32_array(exponent)))
ts_shape = list(timesteps.size())
ts_shape.append(1)
emb_shape = list(emb.size())
emb_shape.insert(0, 1)
emb = timesteps.view(ts_shape) * emb.view(emb_shape)
emb = scale * emb
# concat sine and cosine embeddings
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = concat([cos(emb), sin(emb)], dim=1)
else:
emb = concat([sin(emb), cos(emb)], dim=1)
#TODO Enable below logic when TensorRT LLM supports pad feature.
# zero pad
# if embedding_dim % 2 == 1:
# emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class TimestepEmbedding(Module):
def __init__(self, channel, time_embed_dim, act_fn="silu", dtype=None):
super().__init__()
self.linear_1 = Linear(channel, time_embed_dim, dtype=dtype)
self.act = None
if act_fn == "silu":
self.act = silu
self.linear_2 = Linear(time_embed_dim, time_embed_dim, dtype=dtype)
def forward(self, sample):
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class Timesteps(Module):
def __init__(self,
num_channels,
flip_sin_to_cos,
downscale_freq_shift,
dtype=None):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
self.dtype = dtype
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
dtype=self.dtype)
return t_emb