mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
134 lines
5.2 KiB
Python
134 lines
5.2 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import ctypes
|
|
from collections import OrderedDict
|
|
from pathlib import Path
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import tensorrt as trt
|
|
|
|
from tensorrt_llm._common import default_trtnet
|
|
from tensorrt_llm._utils import str_dtype_to_trt
|
|
from tensorrt_llm.functional import Tensor, _create_tensor
|
|
from tensorrt_llm.module import Module
|
|
|
|
TRT_LLM_PLUGIN_NAMESPACE = 'tensorrt_llm'
|
|
LAYER_NAME = 'TritonFlashAttentionLayer'
|
|
FMHA_KERNEL_BLOCK_SIZE = 128
|
|
|
|
|
|
def _load_triton_plugin_lib():
|
|
triton_plugin_dir = Path(__file__).parent.absolute()
|
|
plugin_lib = triton_plugin_dir / 'build/libtrt_llm_custom_plugins.so'
|
|
handle = ctypes.CDLL(plugin_lib, mode=ctypes.RTLD_GLOBAL)
|
|
if handle is None:
|
|
raise ImportError('TensorRT-LLM Triton Plugin is unavailable')
|
|
handle.initOpenAiTritonPlugins.argtypes = [ctypes.c_void_p, ctypes.c_char_p]
|
|
handle.initOpenAiTritonPlugins.restype = ctypes.c_bool
|
|
assert handle.initOpenAiTritonPlugins(
|
|
None, TRT_LLM_PLUGIN_NAMESPACE.encode('utf-8'))
|
|
|
|
|
|
_load_triton_plugin_lib()
|
|
|
|
|
|
def flash_attention_op(num_heads: int, head_size: int, softmax_scale: float,
|
|
inputs: List[trt.ITensor]) -> Tensor:
|
|
# Create a plugin instance.
|
|
plugin_creator = trt.get_plugin_registry().get_plugin_creator(
|
|
'TritonFlashAttention', '1', TRT_LLM_PLUGIN_NAMESPACE)
|
|
assert plugin_creator is not None
|
|
|
|
pfc = trt.PluginFieldCollection([
|
|
trt.PluginField("num_heads", np.array([num_heads], np.int32),
|
|
trt.PluginFieldType.INT32),
|
|
trt.PluginField("head_size", np.array([head_size], np.int32),
|
|
trt.PluginFieldType.INT32),
|
|
trt.PluginField("softmax_scale", np.array([softmax_scale], np.float32),
|
|
trt.PluginFieldType.FLOAT32),
|
|
trt.PluginField("type_id", np.array([int(inputs[0].dtype)], np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
])
|
|
plugin = plugin_creator.create_plugin("flash_attention", pfc)
|
|
layer = default_trtnet().add_plugin_v2(inputs, plugin)
|
|
return _create_tensor(layer.get_output(0), layer)
|
|
|
|
|
|
class FmhaLayer(Module):
|
|
|
|
def __init__(self, num_heads: int, head_size: int, softmax_scale: float,
|
|
dtype: str):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.softmax_scale = softmax_scale
|
|
self.dtype = str_dtype_to_trt(dtype)
|
|
|
|
def forward(self, Q: Tensor, K: Tensor, V: Tensor):
|
|
inputs = [Q, K, V]
|
|
out = flash_attention_op(num_heads=self.num_heads,
|
|
head_size=self.head_size,
|
|
softmax_scale=self.softmax_scale,
|
|
inputs=[p.trt_tensor for p in inputs])
|
|
out.mark_output('out', self.dtype)
|
|
return out
|
|
|
|
def prepare_inputs(self, max_batch_size: int, max_len: int) -> List[Tensor]:
|
|
'''
|
|
|
|
@brief: Prepare inputs Tensors for the model, the given sizes are used to
|
|
determine the ranges of the dimensions of when using TRT dynamic shapes.
|
|
|
|
@return: a list contains values which can be fed into the self.forward()
|
|
'''
|
|
|
|
bs_range = [1, (max_batch_size + 1) // 2, max_batch_size]
|
|
max_len_range = [1, (max_len + 1) // 2, max_len]
|
|
|
|
dynamic_shape = [-1, self.num_heads, -1, self.head_size]
|
|
Q = Tensor(name='Q',
|
|
dtype=self.dtype,
|
|
shape=dynamic_shape,
|
|
dim_range=OrderedDict([
|
|
('batch_size', [bs_range]),
|
|
('num_heads', [self.num_heads]),
|
|
('seq_len', [max_len_range]),
|
|
('head_size', [self.head_size]),
|
|
]))
|
|
K = Tensor(name='K',
|
|
dtype=self.dtype,
|
|
shape=dynamic_shape,
|
|
dim_range=OrderedDict([
|
|
('batch_size', [bs_range]),
|
|
('num_heads', [self.num_heads]),
|
|
('seq_len', [max_len_range]),
|
|
('head_size', [self.head_size]),
|
|
]))
|
|
V = Tensor(name='V',
|
|
dtype=self.dtype,
|
|
shape=dynamic_shape,
|
|
dim_range=OrderedDict([
|
|
('batch_size', [bs_range]),
|
|
('num_heads', [self.num_heads]),
|
|
('seq_len', [max_len_range]),
|
|
('head_size', [self.head_size]),
|
|
]))
|
|
return [Q, K, V]
|
|
|
|
|
|
def get_engine_name(head_size, dtype):
|
|
return f'{LAYER_NAME}_{FMHA_KERNEL_BLOCK_SIZE}_d{head_size}_{dtype}.engine'
|