mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
158 lines
5.7 KiB
Python
158 lines
5.7 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import tensorrt as trt
|
|
import torch
|
|
from parameterized import parameterized
|
|
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import getSMVersion
|
|
|
|
|
|
class TestMatmul(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def _matmul(self, m, n, k, dtype, ta, tb):
|
|
shape1 = (k, m) if ta else (m, k)
|
|
mat1 = torch.randn(
|
|
shape1, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) * 1e-1
|
|
shape2 = (n, k) if tb else (k, n)
|
|
mat2 = torch.randn(
|
|
shape2, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) * 1e-1
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
x = Tensor(name='x',
|
|
shape=mat1.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
y = Tensor(name='y',
|
|
shape=mat2.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.matmul(x, y, transa=ta,
|
|
transb=tb).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
output.dtype = tensorrt_llm.str_dtype_to_trt(dtype)
|
|
|
|
build_engine = EngineFromNetwork(
|
|
(builder.trt_builder, net.trt_network),
|
|
config=CreateConfig(
|
|
fp16=(dtype == 'float16'),
|
|
bf16=(dtype == 'bfloat16'),
|
|
precision_constraints='obey',
|
|
memory_pool_limits={trt.MemoryPoolType.WORKSPACE: 33554432}))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'x': mat1, 'y': mat2})
|
|
|
|
if ta:
|
|
mat1 = mat1.cuda().transpose(0, 1)
|
|
if tb:
|
|
mat2 = mat2.cuda().transpose(0, 1)
|
|
|
|
tols = {
|
|
"float32": {
|
|
"rtol": 1e-05,
|
|
"atol": 1e-05
|
|
},
|
|
"float16": {
|
|
"rtol": 1e-02,
|
|
"atol": 1e-02
|
|
},
|
|
"bfloat16": {
|
|
"rtol": 1e-02,
|
|
"atol": 1e-02
|
|
},
|
|
}
|
|
|
|
if dtype != "float32":
|
|
mat1 = mat1.cuda()
|
|
mat2 = mat2.cuda()
|
|
else:
|
|
mat1 = mat1.cpu()
|
|
mat2 = mat2.cpu()
|
|
|
|
ref = torch.matmul(mat1, mat2).to(torch.float32)
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'].to(torch.float32),
|
|
**tols[dtype])
|
|
|
|
@parameterized.expand([('float16', False, False), ('float16', False, True),
|
|
('float16', True, False), ('float16', True, True),
|
|
('bfloat16', True, False), ('bfloat16', True, True),
|
|
('float32', False, False), ('float32', False, True),
|
|
('float32', True, False), ('float32', True, True)])
|
|
def test_matmul(self, dtype, transa, transb):
|
|
bs = 2
|
|
inseq = 16
|
|
hidden_size = 768
|
|
tp = 1
|
|
|
|
# Skip tests that are not supported in pre-ampere architecture
|
|
if getSMVersion() < 80:
|
|
if dtype == 'bfloat16':
|
|
pytest.skip(
|
|
"bfloat16 is not supported in pre-ampere architecture")
|
|
|
|
# qkv_gemm
|
|
self._matmul(bs * inseq, 3 * hidden_size // tp, hidden_size, dtype,
|
|
transa, transb)
|
|
|
|
# mlp_gemm_1
|
|
self._matmul(bs * inseq, 4 * hidden_size // tp, hidden_size, dtype,
|
|
transa, transb)
|
|
|
|
def test_matmul_broadcast(self):
|
|
dtype = 'float32'
|
|
x_data = torch.randn(16, 4, 4, 5)
|
|
y_data = torch.randn(16, 1, 5, 4)
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
y = Tensor(name='y',
|
|
shape=y_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.matmul(x, y).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={
|
|
'x': x_data.numpy(),
|
|
'y': y_data.numpy(),
|
|
})
|
|
|
|
ref = torch.matmul(x_data, y_data)
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|