TensorRT-LLMs/tests/functional/test_view.py
2023-09-20 00:29:41 -07:00

104 lines
3.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import tensorrt as trt
import torch
from polygraphy.backend.trt import (CreateConfig, EngineFromNetwork, Profile,
TrtRunner)
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_view_static(self):
# test data
dtype = 'float32'
input_shape = (4, 3)
output_shape = (12, 1)
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.view(input=input,
shape=output_shape).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
# pytorch run
ref = input_data.view(output_shape)
# compare diff
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])
def test_view_dynamic(self):
# test data
dtype = 'float32'
input_shape = (4, 3)
output_shape = (2, 6)
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
shape_data = torch.tensor(output_shape).int()
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
shape = Tensor(name='shape',
shape=(len(input_shape), ),
dtype=trt.int32)
output = tensorrt_llm.functional.view(input=input,
shape=shape).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
profiles = [Profile().add('shape', (1, 1), input_shape, (12, 12))]
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network),
config=CreateConfig(profiles=profiles))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'input': input_data.numpy(),
'shape': shape_data.numpy()
})
# pytorch run
ref = input_data.view(output_shape)
# compare diff
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])