mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
177 lines
6.5 KiB
C++
177 lines
6.5 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/config.h"
|
|
#include "tensorrt_llm/kernels/weightOnlyBatchedGemv/common.h"
|
|
#include "tensorrt_llm/kernels/weightOnlyBatchedGemv/kernel.h"
|
|
|
|
TRTLLM_NAMESPACE_BEGIN
|
|
|
|
namespace kernels
|
|
{
|
|
namespace weight_only
|
|
{
|
|
// TODO:
|
|
// Using a mechanism similar to the gemm config profiler, dynamically search for the optimal configuration during the
|
|
// build engine process.
|
|
template <typename Details, int GroupSize, bool EnableActScale, bool EnableZero, bool EnableBias,
|
|
bool ApplyAlphaInAdvance>
|
|
void dispatcher(Params& params, cudaStream_t s)
|
|
{
|
|
#define DISPATCHER_FOR_M(target_m, CtaM, CtaN, Threads) \
|
|
do \
|
|
{ \
|
|
if (params.m == target_m) \
|
|
{ \
|
|
exec_kernel<Details, CtaM, CtaN, Threads, GroupSize, EnableActScale, EnableZero, EnableBias, \
|
|
ApplyAlphaInAdvance>(params, s); \
|
|
return; \
|
|
} \
|
|
} while (0);
|
|
if constexpr (EnableZero)
|
|
{
|
|
// clang-format off
|
|
DISPATCHER_FOR_M(1, 1, 4, 128);
|
|
DISPATCHER_FOR_M(2, 2, 4, 128);
|
|
DISPATCHER_FOR_M(3, 3, 4, 128);
|
|
DISPATCHER_FOR_M(4, 4, 4, 128);
|
|
DISPATCHER_FOR_M(5, 5, 4, 128);
|
|
DISPATCHER_FOR_M(6, 6, 4, 128);
|
|
DISPATCHER_FOR_M(7, 7, 4, 128);
|
|
DISPATCHER_FOR_M(8, 8, 4, 128);
|
|
DISPATCHER_FOR_M(9, 9, 4, 128);
|
|
DISPATCHER_FOR_M(10, 10, 4, 128);
|
|
DISPATCHER_FOR_M(11, 11, 4, 128);
|
|
DISPATCHER_FOR_M(12, 12, 4, 128);
|
|
DISPATCHER_FOR_M(13, 13, 4, 128);
|
|
DISPATCHER_FOR_M(14, 14, 4, 128);
|
|
DISPATCHER_FOR_M(15, 15, 4, 128);
|
|
// clang-format on
|
|
}
|
|
else
|
|
{
|
|
// clang-format off
|
|
DISPATCHER_FOR_M(1, 1, 8, 128);
|
|
DISPATCHER_FOR_M(2, 2, 8, 128);
|
|
DISPATCHER_FOR_M(3, 3, 8, 128);
|
|
DISPATCHER_FOR_M(4, 4, 8, 128);
|
|
DISPATCHER_FOR_M(5, 5, 8, 128);
|
|
DISPATCHER_FOR_M(6, 6, 8, 128);
|
|
DISPATCHER_FOR_M(7, 7, 8, 128);
|
|
DISPATCHER_FOR_M(8, 8, 8, 128);
|
|
DISPATCHER_FOR_M(9, 9, 8, 128);
|
|
DISPATCHER_FOR_M(10, 10, 8, 128);
|
|
DISPATCHER_FOR_M(11, 11, 8, 128);
|
|
DISPATCHER_FOR_M(12, 12, 8, 128);
|
|
DISPATCHER_FOR_M(13, 13, 8, 128);
|
|
DISPATCHER_FOR_M(14, 14, 8, 128);
|
|
DISPATCHER_FOR_M(15, 15, 8, 128);
|
|
// clang-format on
|
|
}
|
|
throw std::runtime_error("unsupported m");
|
|
#undef DISPATCHER_FOR_M
|
|
}
|
|
|
|
template <typename Details, int GroupSize, bool EnableActScale, bool EnableZero, bool EnableBias>
|
|
void check_alpha(Params& params, cudaStream_t s)
|
|
{
|
|
if (params.apply_alpha_in_advance && params.alpha != 1.f)
|
|
{
|
|
dispatcher<Details, GroupSize, EnableActScale, EnableZero, EnableBias, true>(params, s);
|
|
}
|
|
else
|
|
{
|
|
dispatcher<Details, GroupSize, EnableActScale, EnableZero, EnableBias, false>(params, s);
|
|
}
|
|
}
|
|
|
|
template <typename Details, int GroupSize>
|
|
void check_pointer(Params& params, cudaStream_t s)
|
|
{
|
|
if constexpr (GroupSize == 0)
|
|
{
|
|
check_alpha<Details, GroupSize, false, false, false>(params, s);
|
|
}
|
|
else
|
|
{
|
|
if (params.act_scale && params.zeros && params.bias)
|
|
{
|
|
check_alpha<Details, GroupSize, true, true, true>(params, s);
|
|
}
|
|
else if (params.act_scale && params.zeros && !params.bias)
|
|
{
|
|
check_alpha<Details, GroupSize, true, true, false>(params, s);
|
|
}
|
|
else if (params.act_scale && !params.zeros && params.bias)
|
|
{
|
|
check_alpha<Details, GroupSize, true, false, true>(params, s);
|
|
}
|
|
else if (!params.act_scale && params.zeros && params.bias)
|
|
{
|
|
check_alpha<Details, GroupSize, false, true, true>(params, s);
|
|
}
|
|
else if (!params.act_scale && !params.zeros && params.bias)
|
|
{
|
|
check_alpha<Details, GroupSize, false, false, true>(params, s);
|
|
}
|
|
else if (params.act_scale && !params.zeros && !params.bias)
|
|
{
|
|
check_alpha<Details, GroupSize, true, false, false>(params, s);
|
|
}
|
|
else if (!params.act_scale && params.zeros && !params.bias)
|
|
{
|
|
check_alpha<Details, GroupSize, false, true, false>(params, s);
|
|
}
|
|
else
|
|
{
|
|
check_alpha<Details, GroupSize, false, false, false>(params, s);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <bool isGroupwise, typename Details>
|
|
void select_gs(Params& params, cudaStream_t s)
|
|
{
|
|
if constexpr (isGroupwise)
|
|
{
|
|
if (params.groupsize == 64)
|
|
{
|
|
check_pointer<Details, 64>(params, s);
|
|
}
|
|
else if (params.groupsize == 128)
|
|
{
|
|
check_pointer<Details, 128>(params, s);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (params.groupsize == 0)
|
|
{
|
|
check_pointer<Details, 0>(params, s);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define INSTANTIATE_WEIGHT_ONLY_CUDA_DISPATCHERS(KType, A, B, Layout, ConverterInterleave, KTile) \
|
|
template void select_gs<kernel_type_traits<KType>::isGroupwise, \
|
|
KernelDetails<A, B, Layout, ConverterInterleave, KTile>>(Params & params, cudaStream_t s);
|
|
} // namespace weight_only
|
|
} // namespace kernels
|
|
|
|
TRTLLM_NAMESPACE_END
|