TensorRT-LLMs/benchmarks/python/bert_benchmark.py
2023-09-28 09:00:05 -07:00

264 lines
11 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
from collections import OrderedDict
import tensorrt as trt
import torch
from allowed_configs import get_build_config
from base_benchmark import BaseBenchmark, serialize_engine
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_trt, trt_dtype_to_torch
from tensorrt_llm.builder import Builder
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.runtime import TensorInfo
class BERTBenchmark(BaseBenchmark):
def __init__(self,
engine_dir,
model_name,
mode,
batch_sizes,
in_lens,
dtype,
output_dir,
n_positions=None,
max_input_len=None,
max_output_len=None,
max_batch_size=None,
**kwargs):
super().__init__(engine_dir, model_name, dtype, output_dir)
self.batch_sizes = batch_sizes
self.in_lens = in_lens
self.build_time = 0
if engine_dir is not None:
# Deserialize engine from engine directory
self.serialize_path = os.path.join(engine_dir, self.engine_name)
with open(self.serialize_path, 'rb') as f:
engine_buffer = f.read()
else:
# Build engine
self.use_bert_attention_plugin = False
self.use_gemm_plugin = False
self.use_layernorm_plugin = False
self.enable_qk_half_accum = False
self.enable_context_fmha = False
if mode == 'plugin':
self.use_bert_attention_plugin = dtype
self.use_gemm_plugin = dtype
self.use_layernorm_plugin = dtype
for key, value in get_build_config(model_name).items():
setattr(self, key, value)
# Override the n_positions/max_input_len/max_output_len/max_batch_size to value from cmd line if that's specified.
if n_positions is not None:
assert isinstance(
n_positions, int
) and n_positions > 0, f"n_positions should be a valid int number, got {n_positions}"
self.n_positions = n_positions
if max_input_len is not None:
assert isinstance(
max_input_len, int
) and max_input_len > 0, f"max_input_len should be a valid int number, got {max_input_len}"
self.max_input_len = max_input_len
if max_output_len is not None:
assert isinstance(
max_output_len, int
) and max_output_len > 0, f"max_output_len should be a valid int number, got {max_output_len}"
self.max_output_len = max_output_len
if max_batch_size is not None:
assert isinstance(
max_batch_size, int
) and max_batch_size > 0, f"max_batch_size should be a valid int number, got {max_batch_size}"
self.max_batch_size = max_batch_size
if kwargs.get('force_num_layer_1', False):
self.num_layers = 1
engine_buffer = self.build()
assert engine_buffer is not None
self.session = tensorrt_llm.runtime.Session.from_serialized_engine(
engine_buffer)
def get_config(self):
for inlen in self.in_lens:
if inlen > self.max_input_len:
continue
for batch_size in self.batch_sizes:
if batch_size > self.max_batch_size:
continue
yield (batch_size, inlen)
def prepare_inputs(self, config):
batch_size, inlen = config[0], config[1]
input_ids = torch.randint(100, (batch_size, inlen)).int().cuda()
input_lengths = inlen * torch.ones(
(batch_size, ), dtype=torch.int32, device='cuda')
inputs = {'input_ids': input_ids, 'input_lengths': input_lengths}
output_info = self.session.infer_shapes([
TensorInfo('input_ids', trt.DataType.INT32, input_ids.shape),
TensorInfo('input_lengths', trt.DataType.INT32, input_lengths.shape)
])
outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in output_info
}
stream = torch.cuda.current_stream().cuda_stream
return (inputs, outputs, stream)
def build(self):
bs_range = [1, (self.max_batch_size + 1) // 2, self.max_batch_size]
inlen_range = [1, (self.max_input_len + 1) // 2, self.max_input_len]
builder = Builder()
builder_config = builder.create_builder_config(
name=self.model_name,
precision=self.dtype,
timing_cache=None,
tensor_parallel=self.world_size, # TP only
parallel_build=True,
num_layers=self.num_layers,
num_heads=self.num_heads,
num_kv_heads=self.num_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.n_positions,
max_batch_size=self.max_batch_size,
max_input_len=self.max_input_len,
opt_level=self.builder_opt)
# Initialize model
tensorrt_llm_bert = tensorrt_llm.models.BertModel(
num_layers=self.num_layers,
num_heads=self.num_heads,
hidden_size=self.hidden_size,
vocab_size=self.vocab_size,
hidden_act=self.hidden_act,
max_position_embeddings=self.n_positions,
type_vocab_size=self.type_vocab_size,
mapping=tensorrt_llm.Mapping(world_size=self.world_size,
tp_size=self.world_size))
# Module -> Network
network = builder.create_network()
if self.use_bert_attention_plugin:
network.plugin_config.set_bert_attention_plugin(
dtype=self.use_bert_attention_plugin)
if self.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=self.use_gemm_plugin)
if self.use_layernorm_plugin:
network.plugin_config.set_layernorm_plugin(
dtype=self.use_layernorm_plugin)
if self.enable_qk_half_accum:
network.plugin_config.enable_qk_half_accum()
if self.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if self.world_size > 1:
network.plugin_config.set_nccl_plugin(self.dtype)
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_bert.named_parameters())
# Forward
input_ids = tensorrt_llm.Tensor(
name='input_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([('batch_size', [bs_range]),
('input_len', [inlen_range])]),
)
input_lengths = tensorrt_llm.Tensor(name='input_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('batch_size', [bs_range])
]))
hidden_states = tensorrt_llm_bert(input_ids=input_ids,
input_lengths=input_lengths)
# Mark outputs
hidden_states_dtype = str_dtype_to_trt(self.dtype)
hidden_states.mark_output('hidden_states', hidden_states_dtype)
# Network -> Engine
start = time.time()
engine = builder.build_engine(network, builder_config)
end = time.time()
self.build_time = round(end - start, 2)
if self.output_dir is not None:
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
self.serialize_path = os.path.join(self.output_dir,
self.engine_name)
serialize_engine(engine, self.serialize_path)
if self.runtime_rank == 0:
config_path = os.path.join(self.output_dir, 'config.json')
builder_config.plugin_config = network.plugin_config
builder.save_config(builder_config, config_path)
return engine
def run(self, inputs, config):
ok = self.session.run(*inputs)
assert ok, "Runtime execution failed"
torch.cuda.synchronize()
def report(self, config, latency, percentile95, percentile99,
peak_gpu_used):
if self.runtime_rank == 0:
line = '[BENCHMARK] ' + (
f'model_name {self.model_name} world_size {self.world_size} precision {self.dtype} '
f'batch_size {config[0]} input_length {config[1]} gpu_peak_mem(gb) {peak_gpu_used} '
f'build_time(s) {self.build_time} percentile95(ms) {percentile95} '
f'percentile99(ms) {percentile99} latency(ms) {latency}')
print(line)
def report(self, config, latency, percentile95, percentile99, peak_gpu_used,
csv):
report_dict = super().get_report_dict()
batch_size, inlen = config[0], config[1]
report_dict["num_heads"] = self.num_heads
report_dict["num_kv_heads"] = self.num_heads
report_dict["num_layers"] = self.num_layers
report_dict["hidden_size"] = self.hidden_size
report_dict["vocab_size"] = self.vocab_size
report_dict["batch_size"] = batch_size
report_dict["input_length"] = inlen
report_dict["output_length"] = "n/a"
report_dict["latency(ms)"] = latency
report_dict["build_time(s)"] = self.build_time
report_dict["tokens_per_sec"] = "n/a"
report_dict["percentile95(ms)"] = percentile95
report_dict["percentile99(ms)"] = percentile99
report_dict["gpu_peak_mem(gb)"] = peak_gpu_used
if self.runtime_rank == 0:
if csv:
line = ",".join([str(v) for v in report_dict.values()])
print(line)
with open(self.get_csv_filename(), "a") as file:
file.write(line + "\n")
else:
kv_pairs = [f"{k} {v}" for k, v in report_dict.items()]
line = '[BENCHMARK] ' + " ".join(kv_pairs)
print(line)