mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
176 lines
6.5 KiB
Python
176 lines
6.5 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from pathlib import Path
|
|
from typing import Any, Callable
|
|
|
|
import pytest
|
|
import yaml
|
|
|
|
from ..test_llm import get_model_path
|
|
from .openai_server import RemoteOpenAIServer
|
|
|
|
|
|
def get_token_id(tokenizer: Any, word: str) -> int:
|
|
'''Get the token id for a word using the provided tokenizer.'''
|
|
try:
|
|
return tokenizer.encode(word, add_special_tokens=False)[0]
|
|
except (IndexError, AttributeError, TypeError) as exc:
|
|
pytest.skip(f'Could not get token id for {word}: {exc}')
|
|
|
|
|
|
async def logit_bias_effect_helper(client: Any,
|
|
model_name: str,
|
|
api_type: str = 'completions') -> None:
|
|
'''Helper function to test logit bias effects for both chat and completions APIs.
|
|
|
|
Args:
|
|
client: OpenAI async client
|
|
model_name: Model name to test
|
|
api_type: Either 'completions' or 'chat' to determine which API to use
|
|
'''
|
|
try:
|
|
from transformers import AutoTokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(get_model_path(model_name))
|
|
paris_token_id = get_token_id(tokenizer, 'Paris')
|
|
except ImportError as exc:
|
|
pytest.skip(f'transformers not available: {exc}')
|
|
except Exception as exc:
|
|
paris_token_id = 3681
|
|
print(f'[WARNING] Using fallback token id 3681 for "Paris": {exc}')
|
|
|
|
# Test with strong positive bias for 'Paris'
|
|
logit_bias = {str(paris_token_id): 80}
|
|
|
|
if api_type == 'completions':
|
|
response = await client.completions.create(
|
|
model=model_name,
|
|
prompt='The capital of France is',
|
|
max_tokens=5,
|
|
logit_bias=logit_bias,
|
|
temperature=0.0,
|
|
)
|
|
output = response.choices[0].text
|
|
elif api_type == 'chat':
|
|
response = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=[{
|
|
"role": "user",
|
|
"content": "The capital of France is"
|
|
}],
|
|
max_tokens=5,
|
|
logit_bias=logit_bias,
|
|
temperature=0.0,
|
|
)
|
|
output = response.choices[0].message.content
|
|
else:
|
|
raise ValueError(f"Unsupported api_type: {api_type}")
|
|
|
|
assert 'Paris' in output, f"Expected 'Paris' in output with positive logit bias, got: {output}"
|
|
|
|
# Test with strong negative bias for 'Paris'
|
|
logit_bias = {str(paris_token_id): -80}
|
|
|
|
if api_type == 'completions':
|
|
response = await client.completions.create(
|
|
model=model_name,
|
|
prompt='The capital of France is',
|
|
max_tokens=5,
|
|
logit_bias=logit_bias,
|
|
temperature=0.0,
|
|
)
|
|
output = response.choices[0].text
|
|
elif api_type == 'chat':
|
|
response = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=[{
|
|
"role": "user",
|
|
"content": "The capital of France is"
|
|
}],
|
|
max_tokens=5,
|
|
logit_bias=logit_bias,
|
|
temperature=0.0,
|
|
)
|
|
output = response.choices[0].message.content
|
|
|
|
assert 'Paris' not in output, f"Did not expect 'Paris' in output with negative logit bias, got: {output}"
|
|
|
|
|
|
async def invalid_logit_bias_helper(client: Any,
|
|
model_name: str,
|
|
api_type: str = 'completions') -> None:
|
|
'''Helper function to test invalid logit bias for both chat and completions APIs.
|
|
|
|
Args:
|
|
client: OpenAI async client
|
|
model_name: Model name to test
|
|
api_type: Either 'completions' or 'chat' to determine which API to use
|
|
'''
|
|
import openai
|
|
|
|
with pytest.raises(openai.BadRequestError):
|
|
if api_type == 'completions':
|
|
await client.completions.create(
|
|
model=model_name,
|
|
prompt="Hello world",
|
|
logit_bias={"invalid_token": 1.0}, # Non-integer key
|
|
max_tokens=5,
|
|
)
|
|
elif api_type == 'chat':
|
|
await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=[{
|
|
"role": "user",
|
|
"content": "Hello world"
|
|
}],
|
|
logit_bias={"invalid_token": 1.0}, # Non-integer key
|
|
max_tokens=5,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported api_type: {api_type}")
|
|
|
|
|
|
def make_server_with_custom_sampler_fixture(api_type: str) -> Callable:
|
|
'''Factory for a pytest fixture that launches a server with a custom sampler config.
|
|
api_type: 'chat' or 'completions' (for error messages only)
|
|
'''
|
|
|
|
@pytest.fixture(scope='function')
|
|
def server_with_custom_sampler(model_name: str, request: Any, backend: str,
|
|
tmp_path: Path) -> RemoteOpenAIServer:
|
|
'''Fixture to launch a server (pytorch backend only) with a custom sampler configuration.'''
|
|
sampler_type = getattr(request, 'param', {}).get('sampler_type', "auto")
|
|
if backend != 'pytorch':
|
|
pytest.skip(
|
|
f"Server with custom sampler is only supported for pytorch backend, skipping for {backend}"
|
|
)
|
|
model_path = get_model_path(model_name)
|
|
args = ['--backend', backend]
|
|
temp_file_path = tmp_path / f'test_sampler_config_{request.node.name}.yaml'
|
|
extra_llm_api_options_dict = {
|
|
'enable_chunked_prefill': True,
|
|
'sampler_type': sampler_type
|
|
}
|
|
with temp_file_path.open('w') as f:
|
|
yaml.dump(extra_llm_api_options_dict, f)
|
|
args.extend(['--extra_llm_api_options', str(temp_file_path)])
|
|
args.extend(['--num_postprocess_workers',
|
|
str(0)]) # disable postprocess workers to avoid OOM
|
|
|
|
with RemoteOpenAIServer(model_path, args) as remote_server:
|
|
yield remote_server
|
|
|
|
return server_with_custom_sampler
|