TensorRT-LLMs/cpp/tensorrt_llm/kernels/decodingCommon.cu
Kaiyu Xie d37b507f41
Update TensorRT-LLM main branch (#754)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-12-27 17:41:24 +08:00

149 lines
4.8 KiB
Plaintext

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include <stdio.h>
using namespace tensorrt_llm::common;
namespace tensorrt_llm
{
namespace kernels
{
__global__ void curandInitialize(curandState_t* state, const int size, const uint64_t randomSeed)
{
if (threadIdx.x + blockIdx.x * blockDim.x < size)
{
curand_init(randomSeed, 0, 0, &state[blockIdx.x * blockDim.x + threadIdx.x]);
}
}
void invokeCurandInitialize(
curandState_t* state, const size_t batchSize, const uint64_t randomSeed, cudaStream_t stream)
{
dim3 block(256);
dim3 grid((int) (ceil(batchSize * 1.0 / 256)));
curandInitialize<<<grid, block, 0, stream>>>(state, batchSize, randomSeed);
}
__global__ void curandBatchInitialize(curandState_t* states, const int size, const uint64_t* randomSeeds)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < size)
{
curand_init(randomSeeds[idx], 0, 0, &states[idx]);
}
}
void invokeCurandBatchInitialize(
curandState_t* states, const size_t batchSize, const uint64_t* randomSeeds, cudaStream_t stream)
{
dim3 block(256);
dim3 grid((int) (ceil(batchSize * 1.0 / 256)));
curandBatchInitialize<<<grid, block, 0, stream>>>(states, batchSize, randomSeeds);
}
template <typename T>
__global__ void addBiasSoftMax(T* logits, T* probs, const T* bias, const int* endIds, const FinishedState* finished,
const int vocabSize, const int vocabSizePadded)
{
int bid = blockIdx.x;
const FinishedState finishState = finished != nullptr ? finished[bid] : FinishedState::empty();
if (finishState.isSkipDecoding())
{
return;
}
bool finish = finishState.isFinished();
int offset = bid * vocabSizePadded;
float maxVal = -1 * FLT_MAX;
const bool IS_FP16 = std::is_same<T, half>::value;
const T MAX_T_VAL = (IS_FP16) ? HALF_FLT_MAX : FLT_MAX;
__shared__ float sMaxVal;
__shared__ float sSumVal;
for (int tid = threadIdx.x; tid < vocabSizePadded; tid += blockDim.x)
{
if (tid < vocabSize)
{
if (finish && endIds != nullptr)
{
logits[offset + tid] = (tid == endIds[bid]) ? MAX_T_VAL : -MAX_T_VAL;
}
else
{
T bias_val = (bias != nullptr) ? bias[tid] : (T) 0.0f;
logits[offset + tid] += bias_val;
}
}
else
{
logits[offset + tid] = -MAX_T_VAL;
}
maxVal = max(maxVal, (float) logits[offset + tid]);
}
maxVal = blockReduceMax<float>((float) maxVal);
if (threadIdx.x == 0)
{
sMaxVal = maxVal;
}
__syncthreads();
float sumVal = 0.0f;
for (int tid = threadIdx.x; tid < vocabSizePadded; tid += blockDim.x)
{
probs[offset + tid] = __expf((float) logits[offset + tid] - sMaxVal);
sumVal += (float) probs[offset + tid];
}
sumVal = blockReduceSum<float>(sumVal);
if (threadIdx.x == 0)
{
sSumVal = sumVal;
}
__syncthreads();
for (int tid = threadIdx.x; tid < vocabSizePadded; tid += blockDim.x)
{
probs[offset + tid] = ((float) probs[offset + tid] / (sSumVal + 1e-6f));
}
}
template <typename T>
void invokeAddBiasSoftMax(T* logits, T* probs, const T* bias, const int* endIds, const FinishedState* finished,
const int batchSize, const int vocabSize, const int vocabSizePadded, cudaStream_t stream)
{
dim3 grid(batchSize);
auto const vocabRoundedToWarp = roundUp(vocabSize, 32);
dim3 block(min(vocabRoundedToWarp, 1024));
// vocabSize, e.g., 30000, 7000.... vocabSize is usually very big.
addBiasSoftMax<<<grid, block, 0, stream>>>(logits, probs, bias, endIds, finished, vocabSize, vocabSizePadded);
}
template void invokeAddBiasSoftMax(float* logits, float* probs, const float* bias, const int* endIds,
const FinishedState* finished, const int m, const int nPadded, const int n, cudaStream_t stream);
template void invokeAddBiasSoftMax(half* logits, half* probs, const half* bias, const int* endIds,
const FinishedState* finished, const int m, const int nPadded, const int n, cudaStream_t stream);
} // namespace kernels
} // namespace tensorrt_llm