mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
180 lines
6.7 KiB
C++
180 lines
6.7 KiB
C++
/*
|
|
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/gptModelConfig.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
#include "tensorrt_llm/runtime/promptTuningParams.h"
|
|
#include "tensorrt_llm/runtime/worldConfig.h"
|
|
|
|
#include <array>
|
|
#include <vector>
|
|
|
|
namespace tensorrt_llm::batch_manager::kv_cache_manager
|
|
{
|
|
class KVCacheManager;
|
|
}
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
class TllmRuntime;
|
|
|
|
class RuntimeBuffers
|
|
{
|
|
protected:
|
|
using TensorPtr = ITensor::SharedPtr;
|
|
using KvCacheManager = batch_manager::kv_cache_manager::KVCacheManager;
|
|
|
|
public:
|
|
using TensorMap = StringPtrMap<ITensor>;
|
|
|
|
class GenerationConfig
|
|
{
|
|
public:
|
|
GenerationConfig() = default;
|
|
|
|
explicit GenerationConfig(SizeType batchSize, SizeType beamWidth, SizeType maxInputLength,
|
|
SizeType maxAttentionWindow, SizeType maxSeqLength, SizeType inputLengthSum = SizeType(0))
|
|
: batchSize{batchSize}
|
|
, beamWidth{beamWidth}
|
|
, maxInputLength{maxInputLength}
|
|
, maxAttentionWindow{maxAttentionWindow}
|
|
, maxSeqLength{maxSeqLength}
|
|
, inputLengthSum{inputLengthSum}
|
|
{
|
|
}
|
|
|
|
SizeType batchSize{};
|
|
SizeType beamWidth{};
|
|
SizeType maxInputLength{};
|
|
SizeType maxAttentionWindow{};
|
|
SizeType maxSeqLength{};
|
|
SizeType inputLengthSum{}; // Initialized only if inputPacked is set to true in fromInput.
|
|
|
|
static GenerationConfig fromInput(ITensor const& inputIds, ITensor const& inputLengths, bool inputPacked,
|
|
SizeType beamWidth, SizeType maxAttentionWindow, SizeType maxSequenceLength);
|
|
};
|
|
|
|
public:
|
|
GenerationConfig generationConfig{};
|
|
std::array<TensorMap, 2> inputBuffers{};
|
|
std::array<TensorMap, 2> outputBuffers{};
|
|
|
|
// general
|
|
TensorPtr contextLengthsHost;
|
|
TensorPtr contextLengthsDevice;
|
|
|
|
// engine
|
|
TensorPtr logits;
|
|
TensorPtr sequenceLengths; // with attention plugin
|
|
TensorPtr pastKeyValueLengths; // with attention plugin, host tensor
|
|
TensorPtr attentionMask; // without attention plugin
|
|
TensorPtr positionIds;
|
|
TensorPtr lastTokenIds;
|
|
TensorPtr requestTypes; // with attention plugin. Host tensor
|
|
TensorPtr allGenerationLogits; // pre-allocate a buffer to save all generation logits, device tensor
|
|
|
|
std::vector<TensorPtr> presentKeysVals;
|
|
std::vector<TensorPtr> presentKeysValsAlt; // without attention plugin
|
|
std::vector<TensorPtr> maxAttentionWindows; // with attention plugin, host tensor
|
|
TensorPtr kvCacheBlockPointersHost; // [numLayers, batchSize * beamWidth, 2, maxBlocksPerSeq * 2]
|
|
TensorPtr kvCacheBlockPointersDevice; // [numLayers, batchSize * beamWidth, 2, maxBlocksPerSeq * 2]
|
|
|
|
// References to tmp buffers
|
|
TensorPtr newTokens;
|
|
TensorPtr outputIds;
|
|
TensorPtr outputLengths;
|
|
|
|
// beam search (shared between engine and decoder)
|
|
TensorPtr cacheIndirectionDecoderInput;
|
|
TensorPtr cacheIndirectionDecoderOutput;
|
|
|
|
// decoder
|
|
TensorPtr nbFinished;
|
|
|
|
// Log probs
|
|
TensorPtr cumLogProbs;
|
|
TensorPtr logProbs;
|
|
|
|
// pipeline parallelism
|
|
TensorPtr hiddenStates;
|
|
|
|
// Prompt tuning
|
|
PromptTuningParams promptTuningParams;
|
|
TensorPtr promptTuningTasksHost; // Tensor to hold tasks on host
|
|
|
|
// Context and generation logits buffer
|
|
TensorPtr cacheContextLogits;
|
|
TensorPtr cacheContextLogitsHost;
|
|
TensorPtr cacheGenerationLogits;
|
|
TensorPtr cacheGenerationLogitsHost;
|
|
TensorPtr cacheGenerationFragmentPointerDevice;
|
|
TensorPtr cacheGenerationFragmentPointerHost;
|
|
|
|
bool allocated{false};
|
|
|
|
public:
|
|
void clear();
|
|
void clearTensorMaps();
|
|
|
|
void create(TllmRuntime& runtime, GptModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void initFromInput(ITensor const& inputIds, TensorPtr const& inputLengths, bool inputPacked, SizeType beamWidth,
|
|
SizeType maxAttentionWindow, SizeType maxSequenceLength, BufferManager& manager);
|
|
|
|
//! \brief Reshape buffers based on current GenerationConfig
|
|
void reshape(GptModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void reset(BufferManager& manager);
|
|
|
|
std::vector<RuntimeBuffers> split(
|
|
SizeType contextBatchSize, GptModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void postContextStep(std::vector<RuntimeBuffers> const& contextBuffers, BufferManager& manager,
|
|
GptModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void prepareContextStep(TensorPtr const& inputIds, TokenIdType padId, BufferManager& manager,
|
|
KvCacheManager const* kvCacheManager, SizeType firstBatchSlotIdx, GptModelConfig const& modelConfig,
|
|
WorldConfig const& worldConfig);
|
|
TensorPtr prepareNextStep(SizeType step, BufferManager& manager, KvCacheManager* kvCacheManager,
|
|
SizeType firstBatchSlotIdx, GptModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void getRuntimeBuffers(TensorMap& inputBuffers, TensorMap& outputBuffers, SizeType const step,
|
|
TensorPtr const& inputIds, TensorPtr const& commPtrs, GptModelConfig const& modelConfig,
|
|
WorldConfig const& worldConfig) const;
|
|
|
|
private:
|
|
void gatherLastTokenLogits(
|
|
BufferManager& manager, GptModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void copyAttentionMasks(std::vector<RuntimeBuffers> const& contextBatches, BufferManager& manager);
|
|
|
|
// Some tensors are properly tiled, some are just reshaped.
|
|
void tile(BufferManager& manager, GptModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
static std::vector<SizeType> getPositionIdsContextPhaseGlm(const SizeType& batchSize,
|
|
const SizeType& maxInputLength, const SizeType* pInputLengths, const bool useGptAttentionPlugin,
|
|
const bool usePackedInput);
|
|
|
|
static std::vector<SizeType> getPositionIdsGenerationPhaseGlm(const SizeType& batchSize, const SizeType& beamSize,
|
|
const SizeType& step, const SizeType* pInputLengths, const bool useGptAttentionPlugin,
|
|
const bool usePackedInput);
|
|
};
|
|
|
|
} // namespace tensorrt_llm::runtime
|