TensorRT-LLMs/tensorrt_llm/layers/attention.py
Kaiyu Xie d37b507f41
Update TensorRT-LLM main branch (#754)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-12-27 17:41:24 +08:00

1158 lines
50 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional
import numpy as np
import tensorrt as trt
from .._common import default_net, precision
from .._utils import numpy_fp32_to_bf16, trt_dtype_to_np
from ..functional import (AttentionMaskType, PositionEmbeddingType,
RotaryScalingType, Tensor, bert_attention, cast, clip,
concat, constant, embedding, expand_dims, expand_mask,
generate_alibi_biases, generate_alibi_slopes,
gpt_attention, matmul, repeat_interleave, round,
shape, slice, softmax, split, unsqueeze, view, where)
from ..module import Module
from ..parameter import Parameter
from ..quantization import QuantMode
from ..quantization.functional import dequantize, quantize
from ..quantization.layers import FP8Linear, FP8RowLinear
from .linear import ColumnLinear, RowLinear
from .lora import Lora, LoraRuntimeParams
class RopeEmbeddingUtils:
@staticmethod
def create_sinusoidal_positions(num_pos: int,
dim: int,
theta: float = 10000.0,
dtype=np.float32):
inv_freq = 1.0 / (theta**(np.arange(0, dim, 2) / dim)).astype(dtype)
sinusoid_inp = np.einsum("i , j -> i j",
np.arange(num_pos, dtype=dtype),
inv_freq,
dtype=dtype)
concat = np.concatenate((np.sin(sinusoid_inp), np.cos(sinusoid_inp)),
axis=1)
return np.expand_dims(concat, axis=0).astype(np.float32)
@staticmethod
def rotate_every_two(tensor: Tensor) -> Tensor:
assert tensor.ndim() == 4
shape_tensor = concat([
shape(tensor, i) / 2 if i == (tensor.ndim() -
1) else shape(tensor, i)
for i in range(tensor.ndim())
])
x1 = slice(tensor, [0, 0, 0, 0], shape_tensor, [1, 1, 1, 2])
x2 = slice(tensor, [0, 0, 0, 1], shape_tensor, [1, 1, 1, 2])
x1 = expand_dims(x1, 4)
x2 = expand_dims(x2, 4)
zero = constant(
np.ascontiguousarray(np.zeros([1],
dtype=trt_dtype_to_np(x2.dtype))))
x2 = zero - x2
x = concat([x2, x1], 4)
return view(
x, concat([shape(x, 0),
shape(x, 1),
shape(x, 2),
shape(x, 3) * 2]))
@staticmethod
def rotate_half(tensor: Tensor) -> Tensor:
# [bs, num_attention_kv_heads, seqlen, attention_head_size]
assert tensor.ndim() == 4
shape_tensor = concat([
shape(tensor, i) / 2 if i == (tensor.ndim() -
1) else shape(tensor, i)
for i in range(tensor.ndim())
])
last_dim = shape(tensor, tensor.ndim() - 1) / 2
x1 = slice(tensor, [0, 0, 0, 0], shape_tensor, [1, 1, 1, 1])
x2 = slice(tensor, concat([0, 0, 0, last_dim]), shape_tensor,
[1, 1, 1, 1])
zero = constant(
np.ascontiguousarray(np.zeros([1],
dtype=trt_dtype_to_np(x2.dtype))))
x2 = zero - x2
x = concat([x2, x1], 3)
return x
@staticmethod
def apply_rotary_pos_emb(
tensor: Tensor,
position_embedding: List[Tensor] = None,
pos_emb_type: PositionEmbeddingType = PositionEmbeddingType.rope_gptj
) -> Tensor:
rotate_func = None
if pos_emb_type == PositionEmbeddingType.rope_gpt_neox:
assert len(position_embedding) == 2
cos, sin = position_embedding
sin = expand_dims(sin, 2)
cos = expand_dims(cos, 2)
sin = concat([sin, sin], 3)
cos = concat([cos, cos], 3)
rotate_func = RopeEmbeddingUtils.rotate_half
elif pos_emb_type == PositionEmbeddingType.rope_gptj:
assert len(position_embedding) == 2
cos, sin = position_embedding
sin = expand_dims(sin, 2)
cos = expand_dims(cos, 2)
sin = repeat_interleave(sin, 2, 3)
cos = repeat_interleave(cos, 2, 3)
rotate_func = RopeEmbeddingUtils.rotate_every_two
elif pos_emb_type == PositionEmbeddingType.chatglm:
assert len(position_embedding) == 4
cos0, cos1, sin0, sin1 = position_embedding
if default_net().strongly_typed and tensor.dtype != cos0.dtype:
tensor = cast(tensor, cos0.dtype)
shape_tensor = concat([
shape(tensor, i) / 2 if i == (tensor.ndim() -
1) else shape(tensor, i)
for i in range(tensor.ndim())
])
last_dim = shape(tensor, tensor.ndim() - 1) / 2
x_part0 = slice(tensor, [0, 0, 0, 0], shape_tensor, [1, 1, 1, 1])
x_part1 = slice(tensor, concat([0, 0, 0, last_dim]), shape_tensor,
[1, 1, 1, 1])
y_part0 = (x_part0 *
cos0) + (RopeEmbeddingUtils.rotate_half(x_part0) * sin0)
y_part1 = (x_part1 *
cos1) + (RopeEmbeddingUtils.rotate_half(x_part1) * sin1)
result = concat([y_part0, y_part1], dim=3)
return result.view(shape(tensor))
else:
raise ValueError('The PositionEmbeddingType is not RoPE')
return (tensor * cos) + (rotate_func(tensor) * sin)
@staticmethod
def apply_rotary_pos_emb_chatglm(qkv, position_embedding,
num_attention_heads, attention_head_size,
max_position_embeddings,
rotary_embedding_scale,
remove_input_padding) -> Tensor:
half_head_size = attention_head_size // 2
input = qkv[0] if isinstance(qkv, list) else qkv
input_shape = shape(input)
batch_size = 1 if remove_input_padding else shape(input, 0)
seqlen = shape(input, 0 if remove_input_padding else 1)
if isinstance(qkv, list):
query, key, value = qkv
else:
qkv = qkv.view(
concat([
batch_size,
seqlen,
num_attention_heads,
3,
attention_head_size,
]))
query, key, value = split(qkv, 1, dim=3)
q_shape = concat([
batch_size,
seqlen,
num_attention_heads,
attention_head_size,
])
query = query.view(q_shape)
key = key.view(q_shape)
value = value.view(q_shape)
embedding_weight = RopeEmbeddingUtils.create_sinusoidal_positions(
max_position_embeddings, half_head_size)
embedding_weight /= rotary_embedding_scale
embedding_weight = np.split(embedding_weight.squeeze(0), 2, axis=1)
embedding_weight = np.concatenate(
[
embedding_weight[0],
embedding_weight[0],
embedding_weight[1],
embedding_weight[1],
],
axis=1,
)
if remove_input_padding:
position_embedding = unsqueeze(position_embedding, 0)
embedding_weight = constant(embedding_weight)
position_embedding = embedding(position_embedding, embedding_weight)
position_embedding, block_embedding = split(
position_embedding,
1,
dim=1,
)
sin0, cos0 = split(position_embedding, half_head_size, dim=3)
sin1, cos1 = split(block_embedding, half_head_size, dim=3)
new_shape = concat([
batch_size,
seqlen,
1,
half_head_size,
])
position_embedding = [
tensor.view(new_shape) for tensor in [cos0, cos1, sin0, sin1]
]
query = RopeEmbeddingUtils.apply_rotary_pos_emb(
tensor=query,
position_embedding=position_embedding,
pos_emb_type=PositionEmbeddingType.chatglm)
key = RopeEmbeddingUtils.apply_rotary_pos_emb(
tensor=key,
position_embedding=position_embedding,
pos_emb_type=PositionEmbeddingType.chatglm)
if default_net().strongly_typed:
if query.dtype != value.dtype:
query = cast(query, value.dtype)
if key.dtype != value.dtype:
key = cast(key, value.dtype)
if isinstance(qkv, list):
qkv = [
query.view(input_shape),
key.view(input_shape),
value.view(input_shape),
]
else:
qkv = concat([query, key, value], dim=2)
qkv = qkv.view(input_shape)
return qkv
class AttentionParams(object):
def __init__(self,
sequence_length: Tensor = None,
context_lengths: Tensor = None,
host_context_lengths: Tensor = None,
max_context_length: int = None,
host_request_types: Tensor = None,
encoder_input_lengths: Tensor = None,
encoder_max_input_length: Tensor = None):
self.sequence_length = sequence_length
self.context_lengths = context_lengths
self.host_context_lengths = host_context_lengths
# max allowed context length. Required to
# compute scratch memory size.
self.max_context_length = max_context_length
self.host_request_types = host_request_types
self.encoder_input_lengths = encoder_input_lengths
self.encoder_max_input_length = encoder_max_input_length
def is_valid_cross_attn(self, do_cross_attention):
if do_cross_attention:
if self.encoder_input_lengths is None:
return False
if self.encoder_max_input_length is None:
return False
return True
def is_valid(self, gpt_attention_plugin, remove_input_padding):
if gpt_attention_plugin:
if self.sequence_length is None:
return False
if self.context_lengths is None:
return False
if self.host_request_types is None:
return False
if self.max_context_length is None:
return False
if remove_input_padding:
if self.host_context_lengths is None:
return False
if not gpt_attention_plugin:
return False
return True
class KeyValueCacheParams:
def __init__(self,
past_key_value: List[Tensor] = None,
host_past_key_value_lengths: Tensor = None,
host_max_attention_window_sizes: List[Tensor] = None,
kv_cache_block_pointers: List[Tensor] = None,
host_kv_cache_block_pointers: List[Tensor] = None,
cache_indirection: Tensor = None,
past_key_value_length: Tensor = None):
self.past_key_value = past_key_value
self.host_past_key_value_lengths = host_past_key_value_lengths
self.host_max_attention_window_sizes = host_max_attention_window_sizes
self.kv_cache_block_pointers = kv_cache_block_pointers
self.host_kv_cache_block_pointers = host_kv_cache_block_pointers
self.cache_indirection = cache_indirection
# self.past_key_value_length = past_key_value_length
def get_first_past_key_value(self):
if self.past_key_value is None:
return None
return self.past_key_value[0]
def get_first_kv_cache_block_pointers(self):
if self.kv_cache_block_pointers is None:
return None
return self.kv_cache_block_pointers[0]
def get_first_host_kv_cache_block_pointers(self):
if self.host_kv_cache_block_pointers is None:
return None
return self.host_kv_cache_block_pointers[0]
def fill_none_tensor_list(self, list_size):
if self.past_key_value is None:
self.past_key_value = tuple([None] * list_size)
if self.host_max_attention_window_sizes is None:
self.host_max_attention_window_sizes = tuple([None] * list_size)
def is_valid(self, gpt_attention_plugin):
if gpt_attention_plugin:
if self.host_past_key_value_lengths is None:
return False
if self.host_max_attention_window_sizes is None:
return False
if self.cache_indirection is None:
return False
return True
class Attention(Module):
def __init__(
self,
hidden_size,
num_attention_heads,
num_kv_heads=None,
max_position_embeddings=1024,
num_layers=1,
apply_query_key_layer_scaling=False,
attention_head_size=None,
attention_mask_type=AttentionMaskType.padding,
bias=True,
dtype=None,
position_embedding_type=PositionEmbeddingType.learned_absolute,
rotary_embedding_base=10000.0,
rotary_embedding_scaling=None,
rotary_embedding_percentage=1.0,
tp_group=None,
tp_size=1,
tp_rank=0,
use_auto_parallel=False,
quant_mode: QuantMode = QuantMode(0),
q_scaling=1.0,
cross_attention=False,
relative_attention=False,
max_distance=0,
num_buckets=0,
instance_id: int = 0,
dense_bias=None,
):
super().__init__()
self.cross_attention = cross_attention
self.attention_mask_type = attention_mask_type
self.attention_head_size = hidden_size // num_attention_heads if attention_head_size is None else attention_head_size
assert num_attention_heads % tp_size == 0, \
"num_attention_heads must be divisible by tp_size"
self.num_attention_heads = num_attention_heads // tp_size
self.num_attention_kv_heads = (
num_kv_heads + tp_size - 1
) // tp_size if num_kv_heads is not None else self.num_attention_heads
self.hidden_size = hidden_size // tp_size
self.max_position_embeddings = max_position_embeddings
self.bias = bias
self.tp_size = tp_size
self.tp_rank = tp_rank
self.dtype = dtype
if dense_bias is None:
dense_bias = bias
self.use_auto_parallel = use_auto_parallel
self.unfuse_qkv_gemm = use_auto_parallel
if self.use_auto_parallel:
assert self.tp_size == 1, "please disable manual tp when enable auto_parallel"
self.num_layers = num_layers
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
self.norm_factor = math.sqrt(self.attention_head_size)
self.q_scaling = q_scaling
if self.apply_query_key_layer_scaling:
self.norm_factor *= self.num_layers
self.q_scaling *= self.num_layers
# Whether to scale ALiBi bias. Mathematically, it's equivalent to
# normalizing QK after adding bias.
# - False, inv_sqrt_Dh * Q*K^T + alibi_bias
# - True, inv_sqrt_Dh * Q*K^T + inv_sqrt_Dh * alibi_bias
self.scale_alibi_bias = position_embedding_type == PositionEmbeddingType.alibi_with_scale
self.position_embedding_type = position_embedding_type
self.relative_attention = relative_attention
self.max_distance = max_distance
self.rotary_embedding_base = rotary_embedding_base
self.rotary_embedding_scale_type = RotaryScalingType.none
self.rotary_embedding_scale = 1.0
if rotary_embedding_scaling is not None:
assert rotary_embedding_scaling["type"] in ["linear", "dynamic"]
self.rotary_embedding_scale_type = RotaryScalingType.linear if rotary_embedding_scaling[
"type"] == "linear" else RotaryScalingType.dynamic
self.rotary_embedding_scale = rotary_embedding_scaling["factor"]
assert self.rotary_embedding_scale > 1.0
self.embed_positions = None
self.rotary_enabled = False
self.rotary_embedding_dim = 0
if self.position_embedding_type.is_rope():
self.rotary_embedding_dim = int(self.attention_head_size *
rotary_embedding_percentage)
self.rotary_enabled = True
self.embed_positions = RopeEmbeddingUtils.create_sinusoidal_positions(
self.max_position_embeddings,
self.rotary_embedding_dim,
)
self.quant_mode = quant_mode
self.use_int8_kv_cache = self.quant_mode.has_int8_kv_cache()
if self.quant_mode.has_kv_cache_quant():
self.kv_orig_quant_scale = Parameter(shape=(1, ), dtype='float32')
self.kv_quant_orig_scale = Parameter(shape=(1, ), dtype='float32')
else:
self.register_parameter('kv_orig_quant_scale', None)
self.register_parameter('kv_quant_orig_scale', None)
self.instance_id = instance_id
# The output feature size is therefore (h/tp + 2*kvh/tp) * d, where h is num_heads,
# d is head_size, kvh is the num_kv_heads and tp is tensor_parallel_size.
# In ColumnLinear op, the output dim is calculated by (h + 2*kvh) * d / tp,
# which matches the desired output size (h/tp + 2*kvh/tp) * d after splitting
self.use_fp8_qdq = self.quant_mode.has_fp8_qdq()
if self.use_fp8_qdq:
self.qkv = FP8Linear(
hidden_size,
tp_size * self.num_attention_heads * self.attention_head_size +
(2 * tp_size * self.num_attention_kv_heads *
self.attention_head_size),
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.dense = FP8RowLinear(hidden_size,
hidden_size,
bias=dense_bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
instance_id=instance_id)
else:
# out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size
# example: d_model != num_heads * head_size in Flan-T5
self.qkv = ColumnLinear(
hidden_size,
tp_size * self.num_attention_heads * self.attention_head_size +
(2 * tp_size * self.num_attention_kv_heads *
self.attention_head_size),
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.dense = RowLinear(tp_size * self.num_attention_heads *
self.attention_head_size,
hidden_size,
bias=dense_bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
instance_id=instance_id)
if self.unfuse_qkv_gemm:
linear_class = FP8Linear if self.use_fp8_qdq else ColumnLinear
self.q = linear_class(hidden_size,
hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.k = linear_class(hidden_size,
tp_size * self.num_attention_kv_heads *
self.attention_head_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.v = linear_class(hidden_size,
tp_size * self.num_attention_kv_heads *
self.attention_head_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
# per-layer relative attention table
if relative_attention:
self.rel_attn_table = Parameter(shape=(num_attention_heads //
tp_size, num_buckets),
dtype=dtype)
self.qkv_lora = Lora(
in_hidden_size=hidden_size,
out_hidden_sizes=[
self.num_attention_heads * self.attention_head_size,
self.num_attention_kv_heads * self.attention_head_size,
self.num_attention_kv_heads * self.attention_head_size
],
max_low_rank=min(
hidden_size,
self.num_attention_heads * self.attention_head_size,
self.num_attention_kv_heads * self.attention_head_size),
)
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None,
encoder_output: Optional[Tensor] = None,
workspace=None,
position_embedding=None,
norm_before_bmm1=False,
lora_layer_params=None):
assert isinstance(hidden_states, Tensor)
alibi_slopes = None
if self.position_embedding_type.is_alibi():
dtype = trt.float32
if default_net().plugin_config.gpt_attention_plugin:
dtype = hidden_states.dtype
alibi_scale = 1. / self.norm_factor if self.scale_alibi_bias else 1.
alibi_slopes = generate_alibi_slopes(self.num_attention_heads *
self.tp_size,
dtype=dtype,
tp_size=self.tp_size,
tp_rank=self.tp_rank,
alibi_scale=alibi_scale)
qkv_lora_params = None
if lora_layer_params is not None:
qkv_lora_params = lora_layer_params.get_runtime_params(
0, "attn_qkv")
unfuse_qkv_gemm = self.unfuse_qkv_gemm
if unfuse_qkv_gemm and self.cross_attention and encoder_output is not None:
unfuse_qkv_gemm = False
del self._modules['q']
del self._modules['k']
del self._modules['v']
if unfuse_qkv_gemm:
qkv_gemm = [self.q, self.k, self.v]
qkv_weight = self.qkv.weight.raw_value
if qkv_weight is not None:
weights = np.split(qkv_weight, [
self.q.out_features,
self.q.out_features + self.k.out_features,
])
for gemm, weight in zip(qkv_gemm, weights):
gemm.weight.value = weight
qkv_bias = self.qkv.bias.raw_value if self.qkv.bias is not None else None
if qkv_bias is not None:
biases = np.split(qkv_bias, [
self.q.out_features,
self.q.out_features + self.k.out_features,
])
for gemm, bias in zip(qkv_gemm, biases):
gemm.bias.value = bias
for name, parameter in self.qkv._parameters.items():
if name in ['weight', 'bias']:
continue
for gemm in qkv_gemm:
setattr(gemm, name, parameter)
qkv = [gemm(hidden_states) for gemm in qkv_gemm]
if default_net(
).plugin_config.lora_plugin and qkv_lora_params is not None:
lora = self.qkv.lora(hidden_states, qkv_lora_params)
kv_size = self.attention_head_size * self.num_attention_kv_heads
qkv_lora = split(lora, [self.hidden_size, kv_size, kv_size],
dim=2)
qkv = [tensor + lora for tensor, lora in zip(qkv, qkv_lora)]
del self._modules['qkv']
else:
qkv = self.qkv(hidden_states, qkv_lora_params)
if default_net().plugin_config.remove_input_padding:
if unfuse_qkv_gemm:
for tensor in qkv:
assert tensor.ndim() == 2
else:
assert qkv.ndim() == 2
if default_net(
).plugin_config.lora_plugin and qkv_lora_params is None and lora_layer_params is not None:
q_lora_params = lora_layer_params.get_runtime_params(0, "attn_q")
k_lora_params = lora_layer_params.get_runtime_params(0, "attn_k")
v_lora_params = lora_layer_params.get_runtime_params(0, "attn_v")
assert (q_lora_params is not None and k_lora_params is not None and v_lora_params is not None) or \
(q_lora_params is None and k_lora_params is None and v_lora_params is None), "q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time."
if q_lora_params is not None and k_lora_params is not None and v_lora_params is not None:
qkv_lora_params = LoraRuntimeParams(
lora_ranks=[
q_lora_params.lora_ranks[0],
k_lora_params.lora_ranks[0], v_lora_params.lora_ranks[0]
],
lora_weights_pointers=[
q_lora_params.lora_weights_pointers[0],
k_lora_params.lora_weights_pointers[0],
v_lora_params.lora_weights_pointers[0]
],
host_request_types=q_lora_params.host_request_types,
host_context_lengths=q_lora_params.host_context_lengths,
max_context_length=q_lora_params.max_context_length)
q_lora, k_lora, v_lora = self.qkv_lora(hidden_states,
qkv_lora_params)
qkv_lora = concat([q_lora, k_lora, v_lora], dim=2)
qkv = qkv + qkv_lora
if self.position_embedding_type == PositionEmbeddingType.chatglm:
qkv = RopeEmbeddingUtils.apply_rotary_pos_emb_chatglm(
qkv,
position_embedding,
self.num_attention_heads,
self.attention_head_size,
self.max_position_embeddings,
self.rotary_embedding_scale,
default_net().plugin_config.remove_input_padding,
)
self.rotary_embedding_scale_type = RotaryScalingType.none
self.rotary_embedding_scale = 1.0
paged_kv_cache = default_net().plugin_config.paged_kv_cache
assert attention_params is None or attention_params.is_valid(
default_net().plugin_config.gpt_attention_plugin,
default_net().plugin_config.remove_input_padding)
assert kv_cache_params is None or kv_cache_params.is_valid(
default_net().plugin_config.gpt_attention_plugin)
past_key_value = None if kv_cache_params is None else kv_cache_params.get_first_past_key_value(
)
if self.cross_attention and (past_key_value is not None):
past_key_value = kv_cache_params.past_key_value[1]
# if cross attention, cross QKV only needs to be calculated once in the
# 1st decoding step --> write to cross KV cache --> remains constant
# during the entire decoding. 1st and >1 steps are distinguished by
# whether past_key_value exists or not
# also, cross KV cache max length is set from encoder output seqlen,
# this maps to the max context length concept in decoder-only models
cross_qkv = None
# get length data in every run
if encoder_output:
assert isinstance(encoder_output, Tensor)
# but only do projection once at 1st decoding step
if self.cross_attention and encoder_output:
cross_qkv = self.qkv(encoder_output)
if default_net().plugin_config.gpt_attention_plugin:
assert self.attention_mask_type in [
AttentionMaskType.causal, AttentionMaskType.bidirectional,
AttentionMaskType.bidirectionalglm
], 'Plugin only support masked MHA.'
kv_orig_quant_scale = self.kv_orig_quant_scale.value if self.quant_mode.has_kv_cache_quant(
) else None
kv_quant_orig_scale = self.kv_quant_orig_scale.value if self.quant_mode.has_kv_cache_quant(
) else None
context, past_key_value = gpt_attention(
qkv=qkv,
past_key_value=past_key_value,
sequence_length=attention_params.sequence_length,
host_past_key_value_lengths=kv_cache_params.
host_past_key_value_lengths,
host_max_attention_window_sizes=kv_cache_params.
host_max_attention_window_sizes,
context_lengths=attention_params.context_lengths,
cache_indirection=kv_cache_params.cache_indirection,
host_request_types=attention_params.host_request_types,
num_heads=self.num_attention_heads,
num_kv_heads=self.num_attention_kv_heads,
hidden_size_per_head=self.attention_head_size,
q_scaling=self.q_scaling,
rotary_embedding_dim=self.rotary_embedding_dim,
rotary_embedding_base=self.rotary_embedding_base,
rotary_embedding_scale_type=self.rotary_embedding_scale_type,
rotary_embedding_scale=self.rotary_embedding_scale,
rotary_embedding_max_positions=self.max_position_embeddings,
position_embedding_type=self.position_embedding_type,
kv_orig_quant_scale=kv_orig_quant_scale,
kv_quant_orig_scale=kv_quant_orig_scale,
kv_cache_quant_mode=self.quant_mode,
max_context_length=attention_params.max_context_length,
mask_type=self.attention_mask_type,
alibi_slopes=alibi_slopes,
tp_size=self.tp_size,
tp_rank=self.tp_rank,
kv_cache_block_pointers=kv_cache_params.
get_first_kv_cache_block_pointers(),
host_kv_cache_block_pointers=kv_cache_params.
get_first_host_kv_cache_block_pointers(),
do_cross_attention=self.cross_attention,
cross_qkv=cross_qkv,
cross_qkv_length=attention_params.encoder_max_input_length,
encoder_input_lengths=attention_params.encoder_input_lengths,
relative_attention_bias=self.rel_attn_table.value
if self.relative_attention else None,
max_distance=self.max_distance,
host_context_lengths=attention_params.host_context_lengths,
use_cache=use_cache,
)
else:
# plain TensorRT mode
assert paged_kv_cache == False
past_key_value = None if kv_cache_params is None else kv_cache_params.get_first_past_key_value(
)
def transpose_for_scores(x,
rotary: bool = False,
is_kv: bool = False):
_num_attention_heads = self.num_attention_kv_heads if is_kv else self.num_attention_heads
new_x_shape = concat([
shape(x, 0),
shape(x, 1), _num_attention_heads, self.attention_head_size
])
if rotary:
return x.view(new_x_shape)
else:
return x.view(new_x_shape).permute([0, 2, 1, 3])
# qkv after projection is of shape
# [bs, seqlen, (num_attention_heads + 2 * num_attention_kv_heads), attention_head_size].
# The projected and split qkv after transpose_for_scores():
# Q[bs, num_attention_heads, seqlen, attention_head_size]
# K[bs, num_attention_kv_heads, seqlen, attention_head_size]
# V[bs, num_attention_kv_heads, seqlen, attention_head_size]
kv_size = self.attention_head_size * self.num_attention_kv_heads
if unfuse_qkv_gemm:
query, key, value = qkv[0], qkv[1], qkv[2]
else:
query, key, value = split(qkv,
[self.hidden_size, kv_size, kv_size],
dim=2)
# in cross attention mode, replace kv by encoder_output
if self.cross_attention and encoder_output is not None:
encoder_qkv = self.qkv(encoder_output)
_, key, value = split(encoder_qkv,
[self.hidden_size, kv_size, kv_size],
dim=2)
query = transpose_for_scores(query, rotary=self.rotary_enabled)
key = transpose_for_scores(key,
is_kv=True,
rotary=self.rotary_enabled)
value = transpose_for_scores(value, is_kv=True)
if self.rotary_enabled:
if self.dtype == trt.bfloat16:
embed_positions = numpy_fp32_to_bf16(
self.embed_positions.astype(np.float32))
embed_positions = constant(embed_positions)
else:
embed_positions = constant(self.embed_positions)
if default_net().strongly_typed and (embed_positions.dtype !=
value.dtype):
embed_positions = cast(embed_positions, value.dtype)
if self.rotary_embedding_dim is not None:
# When shape(hidden_states, 1) > 1(Context phase), the embedding start from 0,
# otherwise (Generation phase) move start to position
start = where(
shape(hidden_states, 1) > 1, 0,
shape(past_key_value, 3))
size = where(
shape(hidden_states, 1) > 1, shape(hidden_states, 1), 1)
sincos = slice(embed_positions, concat([0, start, 0]),
concat([1, size, self.rotary_embedding_dim]))
sin, cos = split(sincos,
self.rotary_embedding_dim // 2,
dim=-1)
key_rot_size = concat([
shape(key, 0),
shape(key, 1),
shape(key, 2), self.rotary_embedding_dim
])
query_rot_size = concat([
shape(query, 0),
shape(query, 1),
shape(query, 2), self.rotary_embedding_dim
])
remaining = shape(key, 3) - self.rotary_embedding_dim
key_pass_size = concat([
shape(key, 0),
shape(key, 1),
shape(key, 2), remaining
])
query_pass_size = concat([
shape(query, 0),
shape(query, 1),
shape(query, 2), remaining
])
k_rot = slice(key, [0, 0, 0, 0], key_rot_size)
k_pass = slice(key, [0, 0, 0, self.rotary_embedding_dim],
key_pass_size)
q_rot = slice(query, [0, 0, 0, 0], query_rot_size)
q_pass = slice(query, [0, 0, 0, self.rotary_embedding_dim],
query_pass_size)
k_rot = RopeEmbeddingUtils.apply_rotary_pos_emb(
k_rot, [cos, sin], self.position_embedding_type)
q_rot = RopeEmbeddingUtils.apply_rotary_pos_emb(
q_rot, [cos, sin], self.position_embedding_type)
key = concat([k_rot, k_pass], dim=3)
query = concat([q_rot, q_pass], dim=3)
else:
key = RopeEmbeddingUtils.apply_rotary_pos_emb(
key, [cos, sin], self.position_embedding_type)
query = RopeEmbeddingUtils.apply_rotary_pos_emb(
query, [cos, sin], self.position_embedding_type)
key = key.permute([0, 2, 1, 3])
query = query.permute([0, 2, 1, 3])
past_key_value = None if kv_cache_params is None else kv_cache_params.get_first_past_key_value(
)
if past_key_value is not None:
def dequantize_tensor(x, scale):
# Cast from int8 to dtype
casted_x = cast(x, self.dtype)
return casted_x * scale
if self.use_int8_kv_cache:
past_key_value = dequantize_tensor(
past_key_value, self.kv_quant_orig_scale.value)
if self.use_fp8_qdq and self.quant_mode.has_kv_cache_quant():
past_key_value = dequantize(past_key_value,
self.kv_quant_orig_scale.value)
# past_key_value [bs, 2, num_heads, max_seq_len, head_dim]
past_key, past_value = split(past_key_value, 1, dim=1)
key_shape = concat([
shape(past_key, 0),
shape(past_key, 2),
shape(past_key, 3),
shape(past_key, 4)
])
past_key = past_key.view(key_shape, zero_is_placeholder=False)
past_value = past_value.view(key_shape,
zero_is_placeholder=False)
key = concat([past_key, key], dim=2).cast(self.dtype)
value = concat([past_value, value], dim=2).cast(self.dtype)
if use_cache:
key_inflated_shape = concat([
shape(key, 0), 1,
shape(key, 1),
shape(key, 2),
shape(key, 3)
])
inflated_key = key.view(key_inflated_shape,
zero_is_placeholder=False)
inflated_value = value.view(key_inflated_shape,
zero_is_placeholder=False)
past_key_value = concat([inflated_key, inflated_value], dim=1)
if self.use_int8_kv_cache:
def quantize_tensor(x, scale):
scaled = x * scale
rounded = round(scaled)
clipped = clip(rounded, -128, 127)
quantized = cast(clipped, 'int8')
return quantized
past_key_value = quantize_tensor(
past_key_value, self.kv_orig_quant_scale.value)
if self.use_fp8_qdq and self.quant_mode.has_kv_cache_quant():
past_key_value = quantize(past_key_value,
self.kv_orig_quant_scale.value,
dtype='fp8')
# MQA broadcast
if self.num_attention_heads // self.num_attention_kv_heads > 1:
key = repeat_interleave(
key,
self.num_attention_heads // self.num_attention_kv_heads, 1)
value = repeat_interleave(
value,
self.num_attention_heads // self.num_attention_kv_heads, 1)
key_length = shape(key, 2)
# The following code creates a 2D tensor with 0s in the lower triangular (including the diagonal) and
# +INF in the upper triangular parts. This bias tensor will be added to the output of the Q*K^T matrix
# multiplication (BMM1). The +INF elements will be transformed to 0s by the Softmax operator that
# follows. The elements that corresponds to 0s in the bias are unaffected by the bias tensor.
#
# Note that when we added to another bias tensor B (for example, with AliBi), the values in the lower-
# triangular part of the B tensor are not affected and the upper-triangular ones are set to +INF.
if self.attention_mask_type == AttentionMaskType.causal:
query_length = shape(query, 2)
starts = concat([0, 0, key_length - query_length, 0])
sizes = concat([1, 1, query_length, key_length])
select_buf = np.expand_dims(
np.tril(
np.ones((self.max_position_embeddings,
self.max_position_embeddings))).astype(bool),
(0, 1))
select_buf = np.logical_not(select_buf)
mask_buf = np.zeros_like(select_buf, np.float32)
mask_buf[select_buf] = float('-inf')
buffer = constant(mask_buf)
generated_mask = slice(buffer, starts, sizes)
elif self.attention_mask_type == AttentionMaskType.bidirectional:
query_length = shape(query, 2)
zero_buf = np.expand_dims(
np.zeros((self.max_position_embeddings,
self.max_position_embeddings),
dtype=np.float32), (0, 1))
zero_buf[:, :, :-1, -1] = 1
zero_buf *= -10000
mask = constant(zero_buf)
# context phase, query_length
mask_size = where(query_length > 1, query_length, 1)
mask_start = where(query_length > 1,
self.max_position_embeddings - mask_size, 1)
start = concat([0, 0, mask_start, mask_start])
size = concat([1, 1, mask_size, mask_size])
generated_mask = slice(mask, start, size)
if attention_mask is not None:
attention_mask = expand_mask(attention_mask, shape(query, 2))
bias = attention_mask
if self.position_embedding_type.is_alibi():
alibi_biases = generate_alibi_biases(alibi_slopes, key_length)
bias = alibi_biases if bias is None else bias + alibi_biases
key = key.permute([0, 1, 3, 2])
with precision('float32'):
if norm_before_bmm1:
# Apply norm on query earlier to prevent matmul fp16 overflow.
query /= self.norm_factor
attention_scores = matmul(cast(query, 'float32'),
cast(key, 'float32'))
if not norm_before_bmm1:
attention_scores = attention_scores / self.norm_factor
if self.attention_mask_type in [
AttentionMaskType.causal,
AttentionMaskType.bidirectional
]:
bias = generated_mask if bias is None else bias + generated_mask
if bias is not None and not self.cross_attention:
attention_scores = attention_scores + bias
attention_probs = softmax(attention_scores, dim=-1)
if default_net().strongly_typed and (attention_probs.dtype !=
value.dtype):
attention_probs = cast(attention_probs, value.dtype)
context = matmul(attention_probs, value).permute([0, 2, 1, 3])
context = context.view(
concat([shape(context, 0),
shape(context, 1), self.hidden_size]))
dense_lora_params = None
if lora_layer_params is not None:
dense_lora_params = lora_layer_params.get_runtime_params(
0, "attn_dense")
context = self.dense(context,
workspace,
lora_runtime_params=dense_lora_params)
if use_cache:
return (context, past_key_value)
else:
return context
class BertAttention(Module):
def __init__(self,
hidden_size,
num_attention_heads,
max_position_embeddings=1024,
num_layers=1,
attention_head_size=None,
num_kv_heads=None,
q_scaling=1.0,
apply_query_key_layer_scaling=False,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
tp_rank=0,
relative_attention=False,
max_distance=0,
num_buckets=0):
super().__init__()
self.attention_head_size = hidden_size // num_attention_heads if attention_head_size is None else attention_head_size
self.num_attention_heads = num_attention_heads // tp_size
self.num_attention_kv_heads = (
num_kv_heads + tp_size - 1
) // tp_size if num_kv_heads is not None else self.num_attention_heads
self.hidden_size = hidden_size // tp_size
self.max_position_embeddings = max_position_embeddings
self.norm_factor = math.sqrt(self.attention_head_size)
self.tp_size = tp_size
self.tp_rank = tp_rank
self.num_layers = num_layers
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
self.norm_factor = math.sqrt(self.attention_head_size)
self.q_scaling = q_scaling
if self.apply_query_key_layer_scaling:
self.norm_factor *= self.num_layers
self.q_scaling *= self.num_layers
self.dtype = dtype
self.relative_attention = relative_attention
self.max_distance = max_distance
# out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size
# example: d_model != num_heads * head_size in Flan-T5
self.qkv = ColumnLinear(
hidden_size,
tp_size * self.num_attention_heads * self.attention_head_size +
(2 * tp_size * self.num_attention_kv_heads *
self.attention_head_size),
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.dense = RowLinear(tp_size * self.num_attention_heads *
self.attention_head_size,
hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size)
# per-layer relative attention table
if relative_attention:
self.rel_attn_table = Parameter(shape=(num_attention_heads //
tp_size, num_buckets),
dtype=dtype)
def forward(self,
hidden_states: Tensor,
attention_mask=None,
input_lengths=None,
workspace=None,
max_input_length=None):
assert isinstance(hidden_states, Tensor)
qkv = self.qkv(hidden_states)
if default_net().plugin_config.remove_input_padding:
assert qkv.ndim() == 2
if default_net().plugin_config.bert_attention_plugin:
# TRT plugin mode
assert input_lengths is not None
context = bert_attention(
qkv,
input_lengths,
self.num_attention_heads,
self.attention_head_size,
q_scaling=self.q_scaling,
relative_attention=self.relative_attention,
max_distance=self.max_distance,
relative_attention_bias=self.rel_attn_table.value
if self.relative_attention else None,
max_input_length=max_input_length)
else:
# plain TRT mode
def transpose_for_scores(x):
new_x_shape = concat([
shape(x, 0),
shape(x, 1), self.num_attention_heads,
self.attention_head_size
])
return x.view(new_x_shape).permute([0, 2, 1, 3])
query, key, value = split(qkv, self.hidden_size, dim=2)
query = transpose_for_scores(query)
key = transpose_for_scores(key)
value = transpose_for_scores(value)
key = key.permute([0, 1, 3, 2])
attention_scores = matmul(query, key)
attention_scores = attention_scores / self.norm_factor
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = softmax(attention_scores, dim=-1)
context = matmul(attention_probs, value).permute([0, 2, 1, 3])
context = context.view(
concat([shape(context, 0),
shape(context, 1), self.hidden_size]))
context = self.dense(context, workspace)
return context