TensorRT-LLMs/cpp/tensorrt_llm/layers/baseBeamSearchLayer.cu
Kaiyu Xie d879430b04
Update TensorRT-LLM (#846)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-09 21:03:35 +08:00

265 lines
12 KiB
Plaintext

/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/penaltyKernels.h"
#include "tensorrt_llm/layers/baseBeamSearchLayer.h"
#include "tensorrt_llm/layers/fillBuffers.h"
#include <algorithm>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
namespace tensorrt_llm
{
namespace layers
{
__global__ void update_indir_cache_kernel(int* tgt_indir_cache, const int* src_indir_cache, const int** parent_ids,
const FinishedState* finished, const int* sequence_lengths, const int* input_lengths, int batch_dim,
int local_batch_size, int beam_width, int max_attention_window, int sink_token_length, int max_seq_len)
{
int time_step = threadIdx.x + blockIdx.x * blockDim.x;
int bb_id = threadIdx.y + blockIdx.y * blockDim.y; // should be just blockIdx.y?
const int current_step{sequence_lengths[bb_id] - 1}; // the sequence_lengths is updated, need to minus 1
const int input_length{input_lengths == nullptr ? 0 : input_lengths[bb_id]};
const int batch_id = bb_id / beam_width;
const int beam_id = bb_id % beam_width;
// Exit when the batch_beam or timestep is out of the bound.
// Assume that KV Cache is shared and fixed for context part,
// so we don't need to update the indices for context part.
if (bb_id >= beam_width * local_batch_size || time_step >= max_seq_len || time_step < input_length
|| time_step < (max_seq_len - max_attention_window) || finished[bb_id].isFinished())
{
return;
}
int time_step_circ = time_step;
if (time_step_circ >= sink_token_length)
{
time_step_circ
= sink_token_length + (time_step - sink_token_length) % (max_attention_window - sink_token_length);
}
// for the parent_ids, we will still keep it for all past tokens (i.e. max_seq_len)
const int src_beam = parent_ids[batch_id][beam_id * max_seq_len + current_step];
// for the indir tables, we have the cyclic kv cache.
const uint32_t tgt_offset
= batch_id * beam_width * max_attention_window + beam_id * max_attention_window + time_step_circ;
const uint32_t src_offset
= batch_id * beam_width * max_attention_window + src_beam * max_attention_window + time_step_circ;
tgt_indir_cache[tgt_offset] = (time_step == current_step) ? beam_id : src_indir_cache[src_offset];
}
void update_indir_cache_kernelLauncher(int* tgt_indir_cache, const int* src_indir_cache, const int** parent_ids,
const FinishedState* finished, const int* sequence_lengths, const int* input_lengths, int batch_dim,
int local_batch_size, int beam_width, int max_seq_len, int max_attention_window, int sink_token_length,
cudaStream_t stream)
{
const dim3 block(32);
// Update indirections steps [input_length[bb_id], sequence_lengths[bb_id]], included
const dim3 grid((max_seq_len + block.x - 1) / block.x, local_batch_size * beam_width);
update_indir_cache_kernel<<<grid, block, 0, stream>>>(tgt_indir_cache, src_indir_cache, parent_ids, finished,
sequence_lengths, input_lengths, batch_dim, local_batch_size, beam_width, max_attention_window,
sink_token_length, max_seq_len);
}
template <typename T>
BaseBeamSearchLayer<T>::BaseBeamSearchLayer(size_t vocab_size, size_t vocab_size_padded, cudaStream_t stream,
std::shared_ptr<IAllocator> allocator, bool is_free_buffer_after_forward)
: BaseLayer(stream, std::move(allocator), is_free_buffer_after_forward, nullptr)
, vocab_size_(vocab_size)
, vocab_size_padded_(vocab_size_padded)
{
}
template <typename T>
BaseBeamSearchLayer<T>::BaseBeamSearchLayer(BaseBeamSearchLayer<T> const& beam_search_layer)
: BaseLayer(beam_search_layer)
, vocab_size_(beam_search_layer.vocab_size_)
, vocab_size_padded_(beam_search_layer.vocab_size_padded_)
, topk_softmax_workspace_size_(beam_search_layer.topk_softmax_workspace_size_)
{
}
template <typename T>
BaseBeamSearchLayer<T>::~BaseBeamSearchLayer()
{
TLLM_LOG_TRACE(__PRETTY_FUNCTION__);
freeBuffer();
}
template <typename T>
void BaseBeamSearchLayer<T>::freeBuffer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (is_allocate_buffer_)
{
allocator_->free((void**) (&temperature_buf_));
allocator_->free((void**) (&min_lengths_buf_));
allocator_->free((void**) (&repetition_penalty_buf_));
allocator_->free((void**) (&presence_penalty_buf_));
allocator_->free((void**) (&frequency_penalty_buf_));
is_allocate_buffer_ = false;
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void BaseBeamSearchLayer<T>::allocateBuffer(size_t batch_size)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
temperature_buf_ = allocator_->reMalloc(temperature_buf_, sizeof(float) * batch_size, false);
min_lengths_buf_ = allocator_->reMalloc(min_lengths_buf_, sizeof(int) * batch_size, false);
repetition_penalty_buf_ = allocator_->reMalloc(repetition_penalty_buf_, sizeof(float) * batch_size, false);
presence_penalty_buf_ = allocator_->reMalloc(presence_penalty_buf_, sizeof(float) * batch_size, false);
frequency_penalty_buf_ = allocator_->reMalloc(frequency_penalty_buf_, sizeof(float) * batch_size, false);
is_allocate_buffer_ = true;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void BaseBeamSearchLayer<T>::setupBase(size_t batch_size, SetupParams const& setupParams)
{
allocateBuffer(batch_size);
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
// Setup penalties.
FillBuffers const fillBuffers{batch_size, stream_};
use_temperature_ = static_cast<bool>(setupParams.temperature);
use_repetition_penalty_ = static_cast<bool>(setupParams.repetition_penalty);
use_presence_penalty_ = static_cast<bool>(setupParams.presence_penalty);
use_frequency_penalty_ = static_cast<bool>(setupParams.frequency_penalty);
use_min_lengths_ = static_cast<bool>(setupParams.min_length);
if (use_temperature_)
{
fillBuffers(setupParams.temperature, getDefaultPenaltyValue(RepetitionPenaltyType::Temperature), mTemperature,
temperature_buf_);
}
if (use_repetition_penalty_)
{
fillBuffers(setupParams.repetition_penalty, getDefaultPenaltyValue(RepetitionPenaltyType::Repetition),
mRepetitionPenalty, repetition_penalty_buf_);
}
if (use_presence_penalty_)
{
fillBuffers(setupParams.presence_penalty, getDefaultPenaltyValue(RepetitionPenaltyType::Presence),
mPresencePenalty, presence_penalty_buf_);
}
if (use_frequency_penalty_)
{
fillBuffers(setupParams.frequency_penalty, getDefaultPenaltyValue(RepetitionPenaltyType::Frequency),
mFrequencyPenalty, frequency_penalty_buf_);
}
if (use_min_lengths_)
{
fillBuffers(setupParams.min_length, (int) getDefaultPenaltyValue(RepetitionPenaltyType::MinLength), mMinLengths,
min_lengths_buf_);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void BaseBeamSearchLayer<T>::forward(BeamSearchOutputParams& outputs, ForwardParams const& params,
int* penalty_workspace, const int* penalty_workspace_prev)
{
TLLM_LOG_TRACE("%s", __PRETTY_FUNCTION__);
Tensor& output_ids_ptr = outputs.output_ids_ptr;
const auto batch_size = static_cast<std::int32_t>(output_ids_ptr.shape[0]);
const auto beam_width = static_cast<std::int32_t>(output_ids_ptr.shape[1]);
const auto max_seq_len = static_cast<std::int32_t>(output_ids_ptr.shape[2]);
TLLM_CHECK_WITH_INFO(params.ite == 0, "Pipeline Parallelism is not supported yet !");
const int ite = params.ite;
auto* const input_lengths = params.input_lengths ? params.input_lengths->template getPtr<const int>() : nullptr;
int* sequence_length = (outputs.sequence_length) ? outputs.sequence_length->template getPtr<int>() : nullptr;
Tensor const& logits = params.logits;
const auto local_batch_size = logits.shape[0];
#define ALL_OF(p_, sz_, dt_, v_) (std::all_of(p_, p_ + sz_, [&](dt_ b) { return b == v_; }))
const T* embedding_bias = params.embedding_bias ? params.embedding_bias->template getPtr<const T>() : nullptr;
auto* temperatures = (use_temperature_
&& !ALL_OF(std::begin(mTemperature) + ite * local_batch_size, local_batch_size, float,
getDefaultPenaltyValue(RepetitionPenaltyType::Temperature)))
? temperature_buf_ + ite * local_batch_size
: nullptr;
auto* repetition_penalties
= (use_repetition_penalty_
&& !ALL_OF(std::begin(mRepetitionPenalty) + ite * local_batch_size, local_batch_size, float,
getDefaultPenaltyValue(RepetitionPenaltyType::Repetition)))
? repetition_penalty_buf_ + ite * local_batch_size
: nullptr;
auto* presence_penalties = (use_presence_penalty_
&& !ALL_OF(std::begin(mPresencePenalty) + ite * local_batch_size, local_batch_size,
float, getDefaultPenaltyValue(RepetitionPenaltyType::Presence)))
? presence_penalty_buf_ + ite * local_batch_size
: nullptr;
auto* frequency_penalties = (use_frequency_penalty_
&& !ALL_OF(std::begin(mFrequencyPenalty) + ite * local_batch_size, local_batch_size,
float, getDefaultPenaltyValue(RepetitionPenaltyType::Frequency)))
? frequency_penalty_buf_ + ite * local_batch_size
: nullptr;
auto* min_lengths = (use_min_lengths_
&& !ALL_OF(std::begin(mMinLengths) + ite * local_batch_size, local_batch_size, int,
(int) getDefaultPenaltyValue(RepetitionPenaltyType::MinLength)))
? min_lengths_buf_ + ite * local_batch_size
: nullptr;
InvokeBatchApplyPenaltyParams<T> penalty_params{logits.getPtr<T>(), embedding_bias,
penalty_workspace + ite * local_batch_size * beam_width * vocab_size_,
penalty_workspace_prev + ite * local_batch_size * beam_width * vocab_size_, temperatures, repetition_penalties,
presence_penalties, frequency_penalties,
(use_repetition_penalty_ || use_presence_penalty_ || use_frequency_penalty_), local_batch_size, beam_width,
max_seq_len, vocab_size_, vocab_size_padded_, output_ids_ptr.template getPtr<const int*>(),
outputs.parent_ids_ptr.template getPtr<const int*>(), input_lengths, sequence_length, min_lengths,
params.end_ids.template getPtr<const int>(), stream_};
invokeBatchApplyPenalty(penalty_params);
sync_check_cuda_error();
invokeSoftMax(outputs, params);
if (beam_width > 1)
{
update_indir_cache_kernelLauncher(outputs.tgt_cache_indirection.template getPtr<int>(),
params.src_cache_indirection.template getPtr<const int>(),
outputs.parent_ids_ptr.template getPtr<const int*>(),
reinterpret_cast<const FinishedState*>(
outputs.finished->template getPtr<const FinishedState::UnderlyingType>()),
sequence_length, input_lengths, batch_size, local_batch_size, beam_width, max_seq_len,
params.max_attention_window, params.sink_token_length, stream_);
sync_check_cuda_error();
}
sync_check_cuda_error();
if (is_free_buffer_after_forward_)
{
freeBuffer();
}
sync_check_cuda_error();
}
template class BaseBeamSearchLayer<float>;
template class BaseBeamSearchLayer<half>;
} // namespace layers
} // namespace tensorrt_llm