TensorRT-LLMs/cpp/tensorrt_llm/layers/baseSamplingLayer.h
Kaiyu Xie d879430b04
Update TensorRT-LLM (#846)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-09 21:03:35 +08:00

122 lines
4.1 KiB
C++

/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <curand_kernel.h>
#include "tensorrt_llm/common/tensor.h"
#include "tensorrt_llm/kernels/penaltyTypes.h"
#include "tensorrt_llm/layers/baseLayer.h"
#include "tensorrt_llm/layers/decodingParams.h"
namespace tc = tensorrt_llm::common;
namespace tensorrt_llm
{
namespace layers
{
template <typename T>
class BaseSamplingLayer : public BaseLayer
{
public:
BaseSamplingLayer(size_t vocab_size, size_t vocab_size_padded, cudaStream_t stream,
std::shared_ptr<tensorrt_llm::common::IAllocator> allocator, bool is_free_buffer_after_forward,
cudaDeviceProp* cuda_device_prop);
BaseSamplingLayer(BaseSamplingLayer const& sampling_layer);
~BaseSamplingLayer() override;
class SetupParams : public DecodingSetupParams
{
public:
std::optional<std::vector<std::uint32_t>> runtime_top_k; // [1] or [batch_size] on cpu
std::optional<std::vector<float>> runtime_top_p; // [1] or [batch_size] on cpu
std::optional<std::vector<uint64_t>> randomSeed; // [1] or [batch_size] on cpu
std::optional<std::vector<float>> top_p_decay; // [batch_size], must between [0, 1]
std::optional<std::vector<float>> top_p_min; // [batch_size], must between [0, 1]
std::optional<std::vector<std::int32_t>> top_p_reset_ids; // [batch_size]
std::optional<bool> normalize_log_probs;
};
class ForwardParams : public DecodingParams
{
public:
ForwardParams(int step, int ite, tc::Tensor logits, tc::Tensor end_ids, int max_seq_len)
: DecodingParams{step, ite, std::move(logits), std::move(end_ids)}
, max_seq_len{max_seq_len}
{
}
// mandatory parameters
int max_seq_len;
// optional parameters
std::optional<tc::Tensor> embedding_bias; // [vocab_size_padded]
std::optional<tc::Tensor> input_lengths; // [local_batch_size * beam_width]
};
void forward(DecodingOutputParams& outputs, ForwardParams const& params, int* penalty_workspace);
virtual void setup(size_t batch_size, SetupParams const& setupParams) = 0;
protected:
size_t vocab_size_;
size_t vocab_size_padded_;
size_t sampling_workspace_size_;
void* sampling_workspace_ = nullptr;
curandState_t* curandstate_buf_ = nullptr;
uint64_t* random_seeds_buf_ = nullptr;
float* temperature_buf_ = nullptr;
float* repetition_penalty_buf_ = nullptr;
float* presence_penalty_buf_ = nullptr;
float* frequency_penalty_buf_ = nullptr;
int* min_lengths_buf_ = nullptr;
bool* skip_decode_buf_ = nullptr;
T* runtime_logits_buf_ = nullptr;
std::vector<float> mTemperature;
std::vector<float> mRepetitionPenalty;
std::vector<float> mPresencePenalty;
std::vector<float> mFrequencyPenalty;
std::vector<int> mMinLengths;
bool* skip_decode_ = nullptr;
bool skip_any_ = false;
bool use_temperature_ = false;
bool use_repetition_penalty_ = false;
bool use_presence_penalty_ = false;
bool use_frequency_penalty_ = false;
bool use_min_lengths_ = false;
virtual void runSampling(DecodingOutputParams& outputs, DecodingParams const& params) = 0;
virtual void freeBuffer();
void setupBase(size_t batch_size, SetupParams const& setupParams);
private:
void allocateBuffer(size_t batch_size);
bool isValidBatchSize(size_t batch_size);
};
} // namespace layers
} // namespace tensorrt_llm