TensorRT-LLMs/cpp/tests/layers/samplingLayerTest.h
Kaiyu Xie d879430b04
Update TensorRT-LLM (#846)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-09 21:03:35 +08:00

117 lines
3.8 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <gtest/gtest.h>
#include <memory>
#include "tensorrt_llm/layers/topKSamplingLayer.h"
#include "tensorrt_llm/layers/topPSamplingLayer.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/kernels/penaltyKernels.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
#include "tensorrt_llm/runtime/tllmLogger.h"
#include "tensorrt_llm/common/cudaAllocator.h"
#include "tensorrt_llm/common/tensorConversion.h"
#include "tensorrt_llm/common/tllmException.h"
namespace tensorrt_llm::tests::layers::sampling
{
struct SamplingParams
{
std::vector<uint32_t> topKs;
std::vector<float> topPs;
std::vector<float> temperatures;
std::vector<float> repetitionPenalties;
std::vector<float> presencePenalties;
std::vector<float> frequencyPenalties;
std::vector<int32_t> minLengths;
std::vector<float> decay;
std::vector<float> minTopP;
std::vector<int32_t> topPResetIds;
bool useBias = false;
};
template <typename T>
class SamplingLayerTest : public testing::Test
{
protected:
using TensorPtr = tensorrt_llm::runtime::ITensor::SharedPtr;
int32_t seed = 0;
const static uint64_t mMaxSeed = 32;
const int32_t mBatchSize = 6;
const int32_t mBeamWidth = 1;
const int32_t mBatchBeam = mBatchSize * mBeamWidth;
const int32_t mVocabSize = 8;
const int32_t mVocabSizePadded = mVocabSize;
const int32_t mMaxInputLen = 0; // has no effect.
const int32_t mMaxOutputLen = 4;
const int32_t mMaxSeqLen = mMaxInputLen + mMaxOutputLen;
int32_t mEndId = mVocabSize;
TensorPtr mLogitsDevice;
TensorPtr mPenaltyWorkspaceDevice;
TensorPtr mContextLengthDevice;
TensorPtr mSeqLengthsDevice;
TensorPtr mFinishedDevice;
TensorPtr mOutputIdsDevice;
TensorPtr mEndIdsDevice;
TensorPtr mIdsPtrHost;
TensorPtr mEmbeddingBiasHost;
TensorPtr mEmbeddingBiasDevice;
TensorPtr mCumLogProbsDevice;
const tensorrt_llm::common::DataType data_type = tensorrt_llm::common::getTensorType<T>();
// Order is important because we pass mAllocator to mSamplingLayer and it is used in destructor
std::shared_ptr<tensorrt_llm::runtime::CudaStream> mStream;
std::shared_ptr<tensorrt_llm::runtime::BufferManager> mBufferManager;
std::shared_ptr<tensorrt_llm::common::CudaAllocator> mAllocator;
std::shared_ptr<tensorrt_llm::layers::BaseSamplingLayer<T>> mSamplingLayer;
std::vector<T> mTestLogitsInit;
void setup(uint64_t seed, SamplingParams const& params);
typename tensorrt_llm::layers::BaseSamplingLayer<T>::ForwardParams createInputTensors(int32_t step);
tensorrt_llm::layers::DecodingOutputParams createOutputTensors();
void batchCopy(int32_t step);
bool checkResult(int32_t* outputIds, std::vector<std::set<int32_t>>& expectedIds);
public:
void runTest(std::vector<std::set<int32_t>> expectedOutputIds, SamplingParams const& params, int32_t endId = -1);
};
typedef testing::Types<float, half> FloatAndHalfTypes;
} // namespace tensorrt_llm::tests::layers::sampling