TensorRT-LLMs/cpp/tests/resources/scripts/build_gpt_engines.py
Kaiyu Xie d879430b04
Update TensorRT-LLM (#846)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-09 21:03:35 +08:00

201 lines
7.2 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
import os as _os
import pathlib as _pl
import platform as _pf
import typing as _tp
import hf_gpt_convert as _egc
import torch.multiprocessing as _mp
from build_engines_utils import run_command, wincopy
import build as _egb # isort:skip
def build_engine(weight_dir: _pl.Path, engine_dir: _pl.Path, world_size, *args):
args = [
'--log_level=error',
'--model_dir',
str(weight_dir),
'--output_dir',
str(engine_dir),
'--max_batch_size=256',
'--max_input_len=512',
'--max_output_len=20',
'--max_beam_width=2',
'--builder_opt=0',
f'--world_size={world_size}',
] + list(args)
print("Running: " + " ".join(args))
_egb.run_build(args)
def build_engines(model_cache: _tp.Optional[str] = None, world_size: int = 1):
# TODO add support of Pipeline parallelism to GPT
tp_size = world_size
pp_size = 1
resources_dir = _pl.Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
model_name = 'gpt2'
# Clone or update the model directory without lfs
hf_dir = models_dir / model_name
if hf_dir.exists():
assert hf_dir.is_dir()
run_command(["git", "pull"], cwd=hf_dir)
else:
if _pf.system() == "Windows":
url_prefix = ""
else:
url_prefix = "file://"
model_url = url_prefix + str(
_pl.Path(model_cache) /
model_name) if model_cache else "https://huggingface.co/gpt2"
run_command([
"git", "clone", model_url, "--single-branch", "--no-local",
model_name
],
cwd=hf_dir.parent,
env={
**_os.environ, "GIT_LFS_SKIP_SMUDGE": "1"
})
assert hf_dir.is_dir()
# Download the model file
model_file_name = "pytorch_model.bin"
if model_cache:
if _pf.system() == "Windows":
wincopy(source=str(
_pl.Path(model_cache) / model_name / model_file_name),
dest=model_file_name,
isdir=False,
cwd=hf_dir)
else:
run_command([
"rsync", "-av",
str(_pl.Path(model_cache) / model_name / model_file_name), "."
],
cwd=hf_dir)
else:
run_command(["git", "lfs", "pull", "--include", model_file_name],
cwd=hf_dir)
safetensor_file = hf_dir / "model.safetensors"
has_safetensor = safetensor_file.exists()
if has_safetensor:
safetensor_file.rename(str(safetensor_file) + ".bak")
assert (hf_dir / model_file_name).is_file()
weight_dir = models_dir / 'c-model' / model_name
engine_dir = models_dir / 'rt_engine' / model_name
print("\nConverting to fp32")
tp_pp_dir = f"tp{tp_size}-pp{pp_size}-gpu"
fp32_weight_dir = weight_dir / 'fp32'
_egc.run_conversion(
_egc.ProgArgs(in_file=str(hf_dir),
out_dir=str(fp32_weight_dir),
storage_type='float32',
tensor_parallelism=tp_size))
print("\nBuilding fp32 engines")
tp_dir = f"{world_size}-gpu"
fp32_weight_dir_x_gpu = fp32_weight_dir / tp_dir
build_engine(fp32_weight_dir_x_gpu, engine_dir / 'fp32-default' / tp_pp_dir,
tp_size, '--dtype=float32')
build_engine(fp32_weight_dir_x_gpu, engine_dir / 'fp32-plugin' / tp_pp_dir,
tp_size, '--dtype=float32',
'--use_gpt_attention_plugin=float32')
print("\nConverting to fp16")
fp16_weight_dir = weight_dir / 'fp16'
_egc.run_conversion(
_egc.ProgArgs(in_file=str(hf_dir),
out_dir=str(fp16_weight_dir),
storage_type='float16',
tensor_parallelism=tp_size))
print("\nBuilding fp16 engines")
fp16_weight_dir_x_gpu = fp16_weight_dir / tp_dir
build_engine(fp16_weight_dir_x_gpu, engine_dir / 'fp16-default' / tp_pp_dir,
tp_size, '--dtype=float16')
build_engine(fp16_weight_dir_x_gpu, engine_dir / 'fp16-plugin' / tp_pp_dir,
tp_size, '--dtype=float16',
'--use_gpt_attention_plugin=float16')
build_engine(fp16_weight_dir_x_gpu,
engine_dir / 'fp16-plugin-packed' / tp_pp_dir, tp_size,
'--dtype=float16', '--use_gpt_attention_plugin=float16',
'--remove_input_padding')
# this engine can be use for in-flight batching
ifb_args = [
'--dtype=float16',
'--use_gpt_attention_plugin=float16',
'--remove_input_padding',
'--paged_kv_cache',
'--enable_context_fmha_fp32_acc',
'--max_num_tokens=10000',
'--use_paged_context_fmha',
]
build_engine(fp16_weight_dir_x_gpu,
engine_dir / 'fp16-plugin-packed-paged' / tp_pp_dir, tp_size,
'--max_draft_len=5', *ifb_args)
# We build almost the same engine twice. But this engine has gather_all_token_logits
# to extract logits from python runtime and uses context FMHA for generation to match draft model executions,
# which uses context FMHA for draft tokens prediction.
# Currently the gather_all_token_logits is not supported with target model of speculative decoding
build_engine(fp16_weight_dir_x_gpu,
engine_dir / 'fp16-plugin-packed-paged-gather' / tp_pp_dir,
tp_size, '--gather_all_token_logits',
'--use_context_fmha_for_generation', *ifb_args)
build_engine(
fp16_weight_dir_x_gpu, engine_dir /
'fp16-plugin-packed-paged-context-fmha-for-gen' / tp_pp_dir, tp_size,
'--use_context_fmha_for_generation', '--max_draft_len=5', *ifb_args)
# build engine with lora enabled
build_engine(fp16_weight_dir_x_gpu,
engine_dir / "fp16-plugin-packed-paged-lora" / tp_pp_dir,
tp_size, '--use_lora_plugin=float16',
'--lora_target_modules=attn_qkv', *ifb_args)
if has_safetensor:
_pl.Path(str(safetensor_file) + ".bak").rename(safetensor_file)
print("Done.")
if __name__ == "__main__":
parser = _arg.ArgumentParser()
parser.add_argument("--model_cache",
type=str,
help="Directory where models are stored")
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
_mp.set_start_method("spawn")
build_engines(**vars(parser.parse_args()))