mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
223 lines
8.0 KiB
Python
223 lines
8.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import tensorrt as trt
|
|
|
|
from .._common import default_net, default_trtnet
|
|
from .._utils import str_dtype_to_trt
|
|
from ..functional import (Tensor, _add_plugin_info, _create_tensor, allgather,
|
|
allreduce, cast, matmul)
|
|
from ..module import Module
|
|
from ..parameter import Parameter
|
|
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
|
|
from .lora import Lora, LoraRuntimeParams
|
|
|
|
|
|
def _gemm_plugin(input: Tensor,
|
|
mat2: Tensor,
|
|
transa: bool = False,
|
|
transb: bool = False,
|
|
use_fp8: bool = False,
|
|
strict_dtype: Optional[str] = None) -> Tensor:
|
|
plg_creator = trt.get_plugin_registry().get_plugin_creator(
|
|
'Gemm', '1', TRT_LLM_PLUGIN_NAMESPACE)
|
|
assert plg_creator is not None
|
|
|
|
transa = 1 if transa else 0
|
|
transa = trt.PluginField("transa", np.array(transa, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
transb = 1 if transb else 0
|
|
transb = trt.PluginField("transb", np.array(transb, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
use_fp8 = 1 if use_fp8 else 0
|
|
use_fp8 = trt.PluginField("use_fp8", np.array(use_fp8, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
|
|
if strict_dtype is not None:
|
|
p_dtype = strict_dtype
|
|
else:
|
|
p_dtype = str_dtype_to_trt(default_net().plugin_config.gemm_plugin)
|
|
pf_type = trt.PluginField("type_id", np.array([int(p_dtype)], np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
pfc = trt.PluginFieldCollection([transa, transb, pf_type, use_fp8])
|
|
gemm_plug = plg_creator.create_plugin("gemm", pfc)
|
|
plug_inputs = [input.trt_tensor, mat2.trt_tensor]
|
|
layer = default_trtnet().add_plugin_v2(plug_inputs, gemm_plug)
|
|
_add_plugin_info(layer, plg_creator, "gemm", pfc)
|
|
return _create_tensor(layer.get_output(0), layer)
|
|
|
|
|
|
class Linear(Module):
|
|
|
|
def __init__(self,
|
|
in_features,
|
|
out_features,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_group=None,
|
|
tp_size=1,
|
|
gather_output=True,
|
|
share_weight=None,
|
|
strict_dtype=False):
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.out_features = out_features // tp_size
|
|
self.dtype = dtype
|
|
|
|
if not share_weight:
|
|
self.weight = Parameter(shape=(self.out_features, self.in_features),
|
|
dtype=dtype)
|
|
else:
|
|
self.weight = share_weight
|
|
|
|
self.tp_size = tp_size
|
|
self.tp_group = tp_group
|
|
self.gather_output = gather_output
|
|
self.strict_dtype = self.dtype if strict_dtype else None
|
|
|
|
if bias:
|
|
self.bias = Parameter(shape=(self.out_features, ), dtype=dtype)
|
|
else:
|
|
self.register_parameter('bias', None)
|
|
|
|
self.lora = Lora(
|
|
in_hidden_size=self.in_features,
|
|
out_hidden_sizes=[self.out_features],
|
|
max_low_rank=min(
|
|
self.in_features, self.out_features
|
|
), # Assume low rank is smaller than in/out features
|
|
)
|
|
|
|
def multiply_gather(self,
|
|
x,
|
|
weight,
|
|
gemm_plugin,
|
|
use_fp8=False,
|
|
lora_runtime_params: LoraRuntimeParams = None):
|
|
hidden_state = x
|
|
if gemm_plugin:
|
|
x = _gemm_plugin(x,
|
|
weight,
|
|
transb=True,
|
|
use_fp8=use_fp8,
|
|
strict_dtype=self.strict_dtype)
|
|
else:
|
|
x = matmul(x, weight, transb=True)
|
|
|
|
if default_net(
|
|
).plugin_config.lora_plugin and lora_runtime_params is not None:
|
|
x = x + self.lora(hidden_state,
|
|
lora_runtime_params=lora_runtime_params)
|
|
|
|
if self.bias is not None:
|
|
bias = cast(self.bias.value, x.dtype)
|
|
x = x + bias
|
|
|
|
if self.gather_output and self.tp_size > 1 and self.tp_group is not None:
|
|
# [dim0, local_dim] -> [dim0 * tp_size, local_dim] --> [dim0, local_dim * tp_size]
|
|
x = allgather(x, self.tp_group, gather_dim=-1)
|
|
|
|
return x
|
|
|
|
def forward(self, x, lora_runtime_params: LoraRuntimeParams = None):
|
|
return self.multiply_gather(x,
|
|
self.weight.value,
|
|
default_net().plugin_config.gemm_plugin,
|
|
lora_runtime_params=lora_runtime_params)
|
|
|
|
|
|
ColumnLinear = Linear
|
|
|
|
|
|
class RowLinear(Module):
|
|
|
|
def __init__(self,
|
|
in_features,
|
|
out_features,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_group=None,
|
|
tp_size=1,
|
|
instance_id: int = 0,
|
|
strict_dtype: bool = False):
|
|
super().__init__()
|
|
self.in_features = in_features // tp_size
|
|
self.out_features = out_features
|
|
self.dtype = dtype
|
|
|
|
self.weight = Parameter(shape=(self.out_features, self.in_features),
|
|
dtype=dtype)
|
|
|
|
if bias:
|
|
self.bias = Parameter(shape=(self.out_features, ), dtype=dtype)
|
|
else:
|
|
self.register_parameter('bias', None)
|
|
|
|
self.tp_group = tp_group
|
|
self.tp_size = tp_size
|
|
self.instance_id = instance_id
|
|
|
|
self.lora = Lora(
|
|
in_hidden_size=self.in_features,
|
|
out_hidden_sizes=[self.out_features],
|
|
max_low_rank=min(
|
|
self.in_features, self.out_features
|
|
), # Assume low rank is smaller than in/out features
|
|
)
|
|
self.strict_dtype = self.dtype if strict_dtype else None
|
|
|
|
def multiply_reduce(self,
|
|
x,
|
|
weight,
|
|
gemm_plugin,
|
|
use_fp8=False,
|
|
workspace=None,
|
|
lora_runtime_params: LoraRuntimeParams = None):
|
|
hidden_state = x
|
|
if gemm_plugin:
|
|
x = _gemm_plugin(x,
|
|
weight,
|
|
transb=True,
|
|
use_fp8=use_fp8,
|
|
strict_dtype=self.strict_dtype)
|
|
else:
|
|
x = matmul(x, weight, transb=True)
|
|
|
|
if default_net(
|
|
).plugin_config.lora_plugin and lora_runtime_params is not None:
|
|
x = x + self.lora(hidden_state,
|
|
lora_runtime_params=lora_runtime_params)
|
|
|
|
if self.tp_size > 1 and self.tp_group is not None:
|
|
x = allreduce(x, self.tp_group, workspace, self.instance_id)
|
|
|
|
if self.bias is not None:
|
|
bias = cast(self.bias.value, x.dtype)
|
|
x = x + bias
|
|
|
|
return x
|
|
|
|
def forward(self,
|
|
x,
|
|
workspace=None,
|
|
lora_runtime_params: LoraRuntimeParams = None):
|
|
return self.multiply_reduce(x,
|
|
self.weight.value,
|
|
default_net().plugin_config.gemm_plugin,
|
|
workspace=workspace,
|
|
lora_runtime_params=lora_runtime_params)
|