mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
741 lines
32 KiB
Python
741 lines
32 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import tempfile
|
|
from pathlib import Path
|
|
from typing import List, Optional
|
|
|
|
import tensorrt as trt
|
|
|
|
from ... import profiler
|
|
from ..._common import default_net
|
|
from ..._utils import pad_vocab_size, str_dtype_to_trt
|
|
from ...functional import (RotaryScalingType, Tensor, gather_last_token_logits,
|
|
recv, send)
|
|
from ...layers import (MOE, Attention, AttentionMaskType, AttentionParams,
|
|
ColumnLinear, Embedding, FusedGatedMLP, GatedMLP,
|
|
KeyValueCacheParams, LoraParams, MoeConfig,
|
|
PositionEmbeddingType, PromptTuningEmbedding, RmsNorm)
|
|
from ...mapping import Mapping
|
|
from ...models.quantized.quant import quantize_model
|
|
from ...module import Module, ModuleList
|
|
from ...quantization import QuantMode
|
|
from ...runtime.lora_manager import LoraConfig
|
|
from ...top_model_mixin import TopModelMixin
|
|
from ..generation_mixin import GenerationMixin
|
|
from ..modeling_utils import PretrainedConfig
|
|
from .weight import get_scaling_factors, load_from_awq_llama, load_from_hf_llama
|
|
|
|
|
|
class LLaMADecoderLayer(Module):
|
|
|
|
def __init__(self,
|
|
layer_id,
|
|
hidden_size,
|
|
num_attention_heads,
|
|
num_kv_heads=None,
|
|
max_position_embeddings=2048,
|
|
dtype=None,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
hidden_act='silu',
|
|
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
|
|
rotary_base=10000.0,
|
|
rotary_scaling=None,
|
|
mlp_hidden_size=None,
|
|
tp_group=None,
|
|
tp_size=1,
|
|
tp_rank=0,
|
|
use_auto_parallel=False,
|
|
quant_mode=QuantMode(0),
|
|
rms_norm_eps=1e-06,
|
|
attn_bias=False,
|
|
mlp_bias=False,
|
|
use_fused_mlp=False,
|
|
enable_pos_shift=False,
|
|
dense_context_fmha=False,
|
|
moe_config: MoeConfig = MoeConfig()):
|
|
super().__init__()
|
|
self._layer_id = layer_id # useful for debugging
|
|
# used for quantizing model
|
|
self.hidden_size = hidden_size
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_kv_heads = num_kv_heads
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.dtype = dtype
|
|
self.hidden_act = hidden_act
|
|
self.tp_group = tp_group
|
|
self.tp_size = tp_size
|
|
self.mlp_hidden_size = mlp_hidden_size
|
|
self.attention_mask_type = attention_mask_type
|
|
self.position_embedding_type = position_embedding_type
|
|
self.input_layernorm = RmsNorm(normalized_shape=hidden_size,
|
|
eps=rms_norm_eps,
|
|
dtype=dtype)
|
|
self.mlp_bias = mlp_bias
|
|
self.attention = Attention(
|
|
hidden_size,
|
|
num_attention_heads,
|
|
num_kv_heads,
|
|
max_position_embeddings,
|
|
dtype=dtype,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
bias=attn_bias,
|
|
position_embedding_type=position_embedding_type,
|
|
rotary_embedding_base=rotary_base,
|
|
rotary_embedding_scaling=rotary_scaling,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
use_auto_parallel=use_auto_parallel,
|
|
quant_mode=quant_mode,
|
|
instance_id=2 * layer_id,
|
|
enable_pos_shift=enable_pos_shift,
|
|
dense_context_fmha=dense_context_fmha,
|
|
)
|
|
if not mlp_hidden_size:
|
|
self.mlp_hidden_size = hidden_size * 4
|
|
|
|
ClsMLP = GatedMLP
|
|
mlp_kwargs = {}
|
|
if moe_config.has_moe():
|
|
ClsMLP = MOE
|
|
mlp_kwargs = {
|
|
"moe_config": moe_config,
|
|
"tp_rank": tp_rank,
|
|
}
|
|
elif use_fused_mlp:
|
|
ClsMLP = FusedGatedMLP
|
|
self.mlp = ClsMLP(hidden_size=hidden_size,
|
|
ffn_hidden_size=self.mlp_hidden_size,
|
|
hidden_act=hidden_act,
|
|
dtype=dtype,
|
|
bias=mlp_bias,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=quant_mode,
|
|
instance_id=2 * layer_id + 1,
|
|
**mlp_kwargs)
|
|
self.post_layernorm = RmsNorm(normalized_shape=hidden_size,
|
|
eps=rms_norm_eps,
|
|
dtype=dtype)
|
|
|
|
def forward(self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
use_cache=False,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
all_reduce_workspace=None,
|
|
lora_layer_params=None):
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
if self._layer_id == 0:
|
|
self.register_network_output(f"norm0", hidden_states)
|
|
|
|
attention_output = self.attention(hidden_states,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
workspace=all_reduce_workspace,
|
|
lora_layer_params=lora_layer_params)
|
|
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
if self._layer_id == 0:
|
|
self.register_network_output(f"attn", attention_output)
|
|
|
|
hidden_states = residual + attention_output
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.post_layernorm(hidden_states)
|
|
if self._layer_id == 0:
|
|
self.register_network_output(f"norm1", hidden_states)
|
|
|
|
hidden_states = self.mlp(hidden_states,
|
|
workspace=all_reduce_workspace,
|
|
lora_layer_params=lora_layer_params)
|
|
if self._layer_id == 0:
|
|
self.register_network_output(f"mlp", hidden_states)
|
|
|
|
hidden_states = residual + hidden_states
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class LLaMAModel(Module):
|
|
|
|
def __init__(self,
|
|
num_layers,
|
|
num_heads,
|
|
num_kv_heads,
|
|
hidden_size,
|
|
vocab_size,
|
|
hidden_act,
|
|
max_position_embeddings,
|
|
dtype,
|
|
mlp_hidden_size=None,
|
|
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
|
|
rotary_base=10000.0,
|
|
rotary_scaling=None,
|
|
mapping=Mapping(),
|
|
use_auto_parallel=False,
|
|
quant_mode=QuantMode(0),
|
|
use_parallel_embedding=False,
|
|
embedding_sharding_dim=0,
|
|
rms_norm_eps=1e-06,
|
|
use_fused_mlp=False,
|
|
attn_bias=False,
|
|
mlp_bias=False,
|
|
moe_config: MoeConfig = MoeConfig(),
|
|
use_prompt_tuning: bool = False,
|
|
enable_pos_shift=False,
|
|
dense_context_fmha=False):
|
|
super().__init__()
|
|
self.mapping = mapping
|
|
self.use_prompt_tuning = use_prompt_tuning
|
|
|
|
EmbeddingCls = PromptTuningEmbedding if use_prompt_tuning else Embedding
|
|
if self.mapping.is_first_pp_rank():
|
|
self.vocab_embedding = EmbeddingCls(
|
|
num_embeddings=vocab_size,
|
|
embedding_dim=hidden_size,
|
|
dtype=dtype,
|
|
tp_size=mapping.tp_size if use_parallel_embedding else 1,
|
|
tp_group=mapping.tp_group if use_parallel_embedding else None,
|
|
sharding_dim=embedding_sharding_dim,
|
|
tp_rank=mapping.tp_rank,
|
|
instance_id=2 *
|
|
num_layers, # ids in [0, 2 * (num_layers - 1) + 1] already used
|
|
)
|
|
|
|
self.layers = ModuleList([
|
|
LLaMADecoderLayer(
|
|
layer_id=i,
|
|
hidden_size=hidden_size,
|
|
num_attention_heads=num_heads,
|
|
num_kv_heads=num_kv_heads,
|
|
max_position_embeddings=max_position_embeddings,
|
|
dtype=dtype,
|
|
hidden_act=hidden_act,
|
|
mlp_hidden_size=mlp_hidden_size,
|
|
position_embedding_type=position_embedding_type,
|
|
rotary_base=rotary_base,
|
|
rotary_scaling=rotary_scaling,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
tp_rank=mapping.tp_rank,
|
|
use_auto_parallel=use_auto_parallel,
|
|
quant_mode=quant_mode,
|
|
rms_norm_eps=rms_norm_eps,
|
|
attn_bias=attn_bias,
|
|
mlp_bias=mlp_bias,
|
|
use_fused_mlp=use_fused_mlp,
|
|
enable_pos_shift=enable_pos_shift,
|
|
dense_context_fmha=dense_context_fmha,
|
|
moe_config=moe_config,
|
|
) for i in self.mapping.pp_layers(num_layers)
|
|
])
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
self.ln_f = RmsNorm(normalized_shape=hidden_size,
|
|
eps=rms_norm_eps,
|
|
dtype=dtype)
|
|
|
|
def forward(self,
|
|
input_ids,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
hidden_states=None,
|
|
all_reduce_workspace=None,
|
|
prompt_embedding_table: Optional[Tensor] = None,
|
|
prompt_tasks: Optional[Tensor] = None,
|
|
prompt_vocab_size: Optional[Tensor] = None,
|
|
lora_params=None):
|
|
|
|
kv_cache_params.fill_none_tensor_list(len(self.layers))
|
|
|
|
if use_cache:
|
|
presents = []
|
|
|
|
ptuning_args = []
|
|
if self.use_prompt_tuning:
|
|
ptuning_args = [
|
|
prompt_embedding_table, prompt_tasks, prompt_vocab_size
|
|
]
|
|
if self.mapping.is_first_pp_rank():
|
|
hidden_states = self.vocab_embedding(input_ids, *ptuning_args,
|
|
all_reduce_workspace)
|
|
else:
|
|
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
|
|
self.register_network_output(f"embd", hidden_states)
|
|
|
|
for layer_idx, (
|
|
layer, past, pointer, host_pointer,
|
|
max_attention_window_size) in enumerate(
|
|
zip(self.layers, kv_cache_params.past_key_value,
|
|
kv_cache_params.kv_cache_block_pointers,
|
|
kv_cache_params.host_kv_cache_block_pointers,
|
|
kv_cache_params.host_max_attention_window_sizes)):
|
|
lora_layer_params = None
|
|
if lora_params.lora_ranks is not None:
|
|
lora_layer_params = lora_params.get_layer_params(layer_idx)
|
|
|
|
hidden_states = layer(
|
|
hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=KeyValueCacheParams(
|
|
past_key_value=[past],
|
|
host_past_key_value_lengths=kv_cache_params.
|
|
host_past_key_value_lengths,
|
|
host_max_attention_window_sizes=max_attention_window_size,
|
|
host_sink_token_length=kv_cache_params.
|
|
host_sink_token_length,
|
|
kv_cache_block_pointers=[pointer],
|
|
host_kv_cache_block_pointers=[host_pointer],
|
|
cache_indirection=kv_cache_params.cache_indirection),
|
|
attention_params=attention_params,
|
|
all_reduce_workspace=all_reduce_workspace,
|
|
lora_layer_params=lora_layer_params)
|
|
|
|
if use_cache:
|
|
presents.append(hidden_states[1])
|
|
hidden_states = hidden_states[0]
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
hidden_states = self.ln_f(hidden_states)
|
|
else:
|
|
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
|
|
|
|
if use_cache:
|
|
return (hidden_states, tuple(presents))
|
|
return hidden_states
|
|
|
|
|
|
class LLaMAForCausalLM(LLaMAModel, GenerationMixin, TopModelMixin):
|
|
|
|
def __init__(self,
|
|
num_layers,
|
|
num_heads,
|
|
num_kv_heads,
|
|
hidden_size,
|
|
vocab_size,
|
|
hidden_act,
|
|
max_position_embeddings,
|
|
dtype,
|
|
logits_dtype="float32",
|
|
mlp_hidden_size=None,
|
|
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
|
|
rotary_base=10000.0,
|
|
rotary_scaling=None,
|
|
mapping=Mapping(),
|
|
use_auto_parallel=False,
|
|
quant_mode=QuantMode(0),
|
|
use_parallel_embedding=False,
|
|
embedding_sharding_dim=0,
|
|
rms_norm_eps=1e-06,
|
|
use_fused_mlp=False,
|
|
attn_bias=False,
|
|
mlp_bias=False,
|
|
moe_config=MoeConfig(),
|
|
use_prompt_tuning: bool = False,
|
|
enable_pos_shift=False,
|
|
dense_context_fmha=False):
|
|
config = PretrainedConfig(
|
|
architecture="LLaMAForCausalLM",
|
|
dtype=dtype,
|
|
logits_dtype=logits_dtype,
|
|
vocab_size=vocab_size,
|
|
max_position_embeddings=max_position_embeddings,
|
|
hidden_size=hidden_size,
|
|
num_hidden_layers=num_layers,
|
|
num_attention_heads=num_heads,
|
|
num_key_value_heads=num_kv_heads,
|
|
hidden_act=hidden_act,
|
|
intermediate_size=mlp_hidden_size,
|
|
norm_epsilon=rms_norm_eps,
|
|
position_embedding_type=str(position_embedding_type),
|
|
world_size=mapping.world_size,
|
|
tp_size=mapping.tp_size,
|
|
pp_size=mapping.pp_size,
|
|
quant_mode=quant_mode,
|
|
quant_kwargs={},
|
|
use_prompt_tuning=use_prompt_tuning)
|
|
self.config = config
|
|
# TODO: there is an issue of PretrainedConfig that it does not hold the info of "current rank"
|
|
# it internally constructs a mapping object from the world_size/tp_size/pp_size
|
|
# thus override the config.mapping here to the user provided one, which shall include current rank
|
|
self.config.mapping = mapping
|
|
|
|
if isinstance(dtype, str):
|
|
self.dtype = str_dtype_to_trt(dtype)
|
|
else:
|
|
assert isinstance(dtype, trt.DataType)
|
|
self.dtype = dtype
|
|
|
|
if isinstance(logits_dtype, str):
|
|
self.logits_dtype = str_dtype_to_trt(logits_dtype)
|
|
else:
|
|
assert isinstance(logits_dtype, trt.DataType)
|
|
self.logits_dtype = logits_dtype
|
|
|
|
self.num_layers = num_layers
|
|
self.num_heads = num_heads
|
|
if num_kv_heads is None or num_kv_heads <= 0:
|
|
num_kv_heads = num_heads
|
|
self.num_kv_heads = num_kv_heads
|
|
self.hidden_size = hidden_size
|
|
self.vocab_size = vocab_size
|
|
self.tp_size = mapping.tp_size
|
|
|
|
self.kv_dtype = self.dtype
|
|
if quant_mode.has_int8_kv_cache():
|
|
self.kv_dtype = str_dtype_to_trt('int8')
|
|
elif quant_mode.has_fp8_kv_cache():
|
|
self.kv_dtype = str_dtype_to_trt('fp8')
|
|
|
|
self.quant_mode = quant_mode
|
|
self.use_parallel_embedding = use_parallel_embedding
|
|
self.embedding_sharding_dim = embedding_sharding_dim
|
|
self.moe_config = moe_config
|
|
self.use_fused_mlp = use_fused_mlp
|
|
|
|
super().__init__(num_layers, num_heads, num_kv_heads, hidden_size,
|
|
vocab_size, hidden_act, max_position_embeddings, dtype,
|
|
mlp_hidden_size, position_embedding_type, rotary_base,
|
|
rotary_scaling, mapping, use_auto_parallel, quant_mode,
|
|
use_parallel_embedding, embedding_sharding_dim,
|
|
rms_norm_eps, use_fused_mlp, attn_bias, mlp_bias,
|
|
moe_config, use_prompt_tuning, enable_pos_shift,
|
|
dense_context_fmha)
|
|
|
|
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
|
|
if self.mapping.is_last_pp_rank():
|
|
self.lm_head = ColumnLinear(hidden_size,
|
|
vocab_size_padded,
|
|
bias=False,
|
|
dtype=dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
gather_output=True)
|
|
|
|
def forward(self,
|
|
input_ids,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
last_token_ids=None,
|
|
attention_mask=None,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
hidden_states=None,
|
|
all_reduce_workspace=None,
|
|
prompt_embedding_table: Optional[Tensor] = None,
|
|
prompt_tasks: Optional[Tensor] = None,
|
|
prompt_vocab_size: Optional[Tensor] = None,
|
|
lora_params=None):
|
|
hidden_states = super().forward(input_ids, position_ids, use_cache,
|
|
attention_mask, kv_cache_params,
|
|
attention_params, hidden_states,
|
|
all_reduce_workspace,
|
|
prompt_embedding_table, prompt_tasks,
|
|
prompt_vocab_size, lora_params)
|
|
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
hidden_states = gather_last_token_logits(
|
|
hidden_states, last_token_ids,
|
|
default_net().plugin_config.remove_input_padding)
|
|
|
|
# [batch_size, hidden_size] -> [batch_size, vocab_size]
|
|
lm_logits = self.lm_head(hidden_states)
|
|
lm_logits.mark_output('logits', self.logits_dtype)
|
|
else:
|
|
hidden_states.mark_output('hidden_states_output', self.dtype)
|
|
|
|
if use_cache and default_net().plugin_config.paged_kv_cache == False:
|
|
for i, present in zip(self.mapping.pp_layers(self.num_layers),
|
|
presents):
|
|
present.mark_output(f'present_key_value_{i}', self.kv_dtype)
|
|
if self.mapping.is_last_pp_rank():
|
|
return (lm_logits, presents)
|
|
return (hidden_states, presents)
|
|
else:
|
|
if self.mapping.is_last_pp_rank():
|
|
return lm_logits
|
|
return hidden_states
|
|
|
|
def prepare_inputs(self,
|
|
max_batch_size,
|
|
max_input_len,
|
|
max_new_tokens,
|
|
use_cache,
|
|
max_beam_width,
|
|
max_num_tokens: int = None,
|
|
prompt_embedding_table_size: int = 0,
|
|
gather_context_logits: bool = False,
|
|
gather_generation_logits: bool = False,
|
|
lora_target_modules: List[str] = None):
|
|
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
|
|
ranges of the dimensions of when using TRT dynamic shapes.
|
|
|
|
@return: a list contains values which can be fed into the self.forward()
|
|
'''
|
|
|
|
# Prepare inputs
|
|
head_size = self.hidden_size // self.num_heads
|
|
remove_input_padding = default_net().plugin_config.remove_input_padding
|
|
use_gpt_attention_plugin = default_net(
|
|
).plugin_config.gpt_attention_plugin
|
|
use_gemm_plugin = default_net().plugin_config.gemm_plugin
|
|
paged_kv_cache = default_net().plugin_config.paged_kv_cache
|
|
tokens_per_block = default_net().plugin_config.tokens_per_block
|
|
use_custom_all_reduce = default_net(
|
|
).plugin_config.use_custom_all_reduce
|
|
use_lora_plugin = default_net().plugin_config.lora_plugin
|
|
|
|
model_inputs = self.prepare_basic_inputs(
|
|
max_batch_size,
|
|
max_beam_width,
|
|
max_input_len,
|
|
max_new_tokens,
|
|
self.num_kv_heads,
|
|
head_size,
|
|
self.num_layers,
|
|
self.kv_dtype,
|
|
remove_input_padding=remove_input_padding,
|
|
use_gpt_attention_plugin=use_gpt_attention_plugin,
|
|
use_gemm_plugin=use_gemm_plugin,
|
|
use_custom_all_reduce=use_custom_all_reduce,
|
|
paged_kv_cache=paged_kv_cache,
|
|
tokens_per_block=tokens_per_block,
|
|
dtype=self.dtype,
|
|
num_heads=self.num_heads,
|
|
mapping=self.mapping,
|
|
max_num_tokens=max_num_tokens,
|
|
prompt_embedding_table_size=prompt_embedding_table_size,
|
|
gather_context_logits=gather_context_logits,
|
|
gather_generation_logits=gather_generation_logits,
|
|
use_lora_plugin=use_lora_plugin,
|
|
lora_target_modules=lora_target_modules)
|
|
|
|
return (
|
|
model_inputs['input_ids'],
|
|
model_inputs['position_ids'],
|
|
True,
|
|
model_inputs['last_token_ids'],
|
|
model_inputs['attention_mask'],
|
|
KeyValueCacheParams(
|
|
past_key_value=model_inputs['past_key_value'],
|
|
host_past_key_value_lengths=model_inputs[
|
|
'host_past_key_value_lengths'],
|
|
host_max_attention_window_sizes=model_inputs[
|
|
'host_max_attention_window_sizes'],
|
|
host_sink_token_length=model_inputs['host_sink_token_length'],
|
|
kv_cache_block_pointers=model_inputs[
|
|
'kv_cache_block_pointers_list'],
|
|
host_kv_cache_block_pointers=model_inputs[
|
|
'host_kv_cache_block_pointers_list'],
|
|
cache_indirection=model_inputs['cache_indirection'],
|
|
),
|
|
AttentionParams(
|
|
sequence_length=model_inputs['sequence_length'],
|
|
context_lengths=model_inputs['context_lengths'],
|
|
host_context_lengths=model_inputs['host_context_lengths'],
|
|
max_context_length=max_input_len,
|
|
host_request_types=model_inputs['host_request_types']),
|
|
model_inputs['hidden_states_input'],
|
|
model_inputs['all_reduce_workspace'],
|
|
model_inputs['prompt_embedding_table'],
|
|
model_inputs['tasks'],
|
|
model_inputs['prompt_vocab_size'],
|
|
LoraParams(
|
|
model_inputs['lora_ranks'],
|
|
model_inputs['lora_weights_pointers'],
|
|
host_context_lengths=model_inputs['host_context_lengths'],
|
|
max_context_length=max_input_len,
|
|
host_request_types=model_inputs['host_request_types']),
|
|
)
|
|
|
|
@classmethod
|
|
def from_hugging_face(cls,
|
|
hf_model_dir,
|
|
dtype='float16',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_mode: Optional[QuantMode] = None,
|
|
**kwargs):
|
|
import transformers
|
|
from transformers import LlamaConfig
|
|
|
|
cfg = LlamaConfig.from_pretrained(hf_model_dir)
|
|
|
|
num_kv_heads = cfg.num_key_value_heads if hasattr(cfg, "num_key_value_heads") \
|
|
else cfg.num_attention_heads
|
|
if mapping is None:
|
|
mapping = Mapping()
|
|
if quant_mode is None:
|
|
quant_mode = QuantMode(0)
|
|
|
|
tllm_llama = LLaMAForCausalLM(
|
|
num_layers=cfg.num_hidden_layers,
|
|
num_heads=cfg.num_attention_heads,
|
|
num_kv_heads=num_kv_heads,
|
|
hidden_size=cfg.hidden_size,
|
|
vocab_size=cfg.vocab_size,
|
|
hidden_act=cfg.hidden_act,
|
|
max_position_embeddings=cfg.max_position_embeddings,
|
|
dtype=dtype,
|
|
mlp_hidden_size=cfg.intermediate_size,
|
|
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
|
|
mapping=mapping,
|
|
rotary_base=getattr(cfg, 'rotary_base', 10000.0),
|
|
rotary_scaling=getattr(cfg, 'rotary_scaling', None),
|
|
rms_norm_eps=cfg.rms_norm_eps,
|
|
# current load_from_hf_llama can read these, so need to set these here,
|
|
# ideally these attributes shall be set after the from_hugging_face returned an object to user
|
|
# since these attributes are not related to the hugging face model, they only affect the TRT-LLM module
|
|
# the weights transformation or any model optimization shall be done outside from_hugging_face
|
|
quant_mode=quant_mode,
|
|
use_parallel_embedding=kwargs.get("use_parallel_embedding", False),
|
|
embedding_sharding_dim=kwargs.get("embedding_sharding_dim", 0),
|
|
use_fused_mlp=kwargs.get("use_fused_mlp", False),
|
|
moe_config=kwargs.get("moe_config",
|
|
MoeConfig()), # load weights use this
|
|
use_prompt_tuning=kwargs.get("use_prompt_tuning", False))
|
|
|
|
if quant_mode.has_any_quant():
|
|
tllm_llama._quantize(hf_model_dir, dtype, **kwargs)
|
|
|
|
# For debug purpose, skip weights loading to be faster
|
|
if kwargs.get("skip_loading_weights", False):
|
|
return tllm_llama
|
|
|
|
# TODO: support mixtral
|
|
|
|
# weights already loaded in _quantize for int4 weight only
|
|
if not quant_mode.is_int4_weight_only_per_group():
|
|
hf_model = transformers.LlamaForCausalLM
|
|
profiler.start("Loading weights from HF")
|
|
hf_llama = hf_model.from_pretrained(
|
|
hf_model_dir,
|
|
device_map={
|
|
"model": "cpu",
|
|
"lm_head": "cpu",
|
|
"embed_tokens": "cpu",
|
|
"layers": "cpu",
|
|
"norm": "cpu",
|
|
}, # Load to CPU memory
|
|
torch_dtype='auto',
|
|
)
|
|
load_from_hf_llama(
|
|
tllm_llama,
|
|
hf_llama,
|
|
mapping=mapping,
|
|
dtype=dtype,
|
|
# TODO: these shall be outside from_hugging_face too.
|
|
use_gemm_woq_plugin=kwargs.get("use_gemm_woq_plugin", False),
|
|
lora_config=kwargs.get("lora_config", LoraConfig()),
|
|
)
|
|
profiler.stop("Loading weights from HF")
|
|
del hf_llama
|
|
return tllm_llama
|
|
|
|
def _quantize(self, hf_model_dir, dtype, **kwargs):
|
|
'''Given the quant_mode set in the Module object, read from given hf model
|
|
call AMMO to generate quantization scales, and set the scales back the module parameters.
|
|
'''
|
|
# use self destructed temporary path if kwargs[quantization_cache_dir] is not specified
|
|
# sometimes the quantization checkpoint path needs to be saved for debug purpose
|
|
quantized_temp_dir = tempfile.TemporaryDirectory("llama-quantized")
|
|
quantized_checkpoint_path = kwargs.get("quantization_cache_dir",
|
|
quantized_temp_dir.name)
|
|
quantize_lm_head = kwargs.get("quantize_lm_head", False)
|
|
quant_mode = self.quant_mode
|
|
ammo_qformat = None
|
|
calib_size = None
|
|
if quant_mode.has_fp8_qdq() or quant_mode.has_fp8_kv_cache():
|
|
ammo_qformat = 'fp8'
|
|
calib_size = 512
|
|
# TODO: how to distinguish from quant_mode about int4_awq or int4_gptq?
|
|
elif quant_mode.is_int4_weight_only_per_group():
|
|
ammo_qformat = 'int4_awq'
|
|
calib_size = 32
|
|
assert ammo_qformat is not None
|
|
|
|
# local import to avoid pytest issue when importing AMMO and transformers lib
|
|
from .quantize import quantize_llama_and_export
|
|
quantize_llama_and_export(hf_model_dir,
|
|
quantized_checkpoint_path,
|
|
ammo_qformat,
|
|
dtype,
|
|
calib_size=calib_size,
|
|
quantize_lm_head=quantize_lm_head)
|
|
|
|
ckpt = Path(quantized_checkpoint_path) / "llama_tp1_rank0.npz"
|
|
assert ckpt.exists(), f"The expecting checkpoint path {ckpt} does not exist" \
|
|
"it's likely quantization failed, pls check error logs"
|
|
if ammo_qformat == 'fp8':
|
|
quant_scales = get_scaling_factors(ckpt,
|
|
num_layers=self.num_layers,
|
|
quant_mode=quant_mode)
|
|
quantize_kwargs = {"quant_scales": quant_scales}
|
|
else:
|
|
assert ammo_qformat == 'int4_awq'
|
|
exclude_modules = ['lm_head'] if not quantize_lm_head else []
|
|
quantize_kwargs = {
|
|
"group_size": 128, # default from examples/llama/build.py
|
|
"zero": False,
|
|
"pre_quant_scale": True,
|
|
"exclude_modules": exclude_modules,
|
|
}
|
|
# for fp8, the quantize_model only set scale factors to the model parameters
|
|
quantize_model(self, quant_mode, **quantize_kwargs)
|
|
|
|
if ammo_qformat == 'int4_awq':
|
|
load_from_awq_llama(tensorrt_llm_llama=self,
|
|
quant_ckpt_path=str(ckpt),
|
|
mapping=self.mapping,
|
|
dtype=dtype,
|
|
quantize_lm_head=quantize_lm_head,
|
|
bin_model_dir=None)
|
|
|
|
# llama specific setters, user shall has the chance to change the module attributes after
|
|
# from_hugging_face factory method created the model when these attributes is not included in the huggingface checkpoint
|
|
|
|
def rotary_base(self, val):
|
|
for decoder in self.layers:
|
|
decoder.attention.rotary_embedding_base = val
|
|
return self
|
|
|
|
def rotary_scaling(self, scaling_type, factor):
|
|
# TODO: what if there are some other behaviors triggered by the these changes?
|
|
# should implement these assignment as setters of the Attention Module
|
|
assert scaling_type in ("linear", "dynamic"), f"Got {scaling_type}"
|
|
assert factor > 1.0, f"Got {factor}"
|
|
for decoder in self.layers:
|
|
decoder.attention.rotary_embedding_scale_type = RotaryScalingType.linear if scaling_type == "linear" else RotaryScalingType.dynamic
|
|
decoder.attention.rotary_embedding_scale = factor
|
|
return self
|
|
|
|
def default_plugin_config(self, **kwargs):
|
|
plugin_config = super().default_plugin_config(**kwargs)
|
|
if self.quant_mode.is_int4_weight_only_per_group():
|
|
plugin_config.set_weight_only_groupwise_quant_matmul_plugin()
|
|
return plugin_config
|