mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
394 lines
16 KiB
Python
394 lines
16 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
# isort: off
|
|
import torch
|
|
# isort: on
|
|
from parameterized import parameterized
|
|
from transformers import AutoConfig, AutoModelForCausalLM
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Builder
|
|
from tensorrt_llm._utils import str_dtype_to_trt
|
|
from tensorrt_llm.network import net_guard
|
|
from tensorrt_llm.plugin.plugin import ContextFMHAType
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
|
|
from examples.phi.weight import load_from_hf_phi
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import getSMVersion
|
|
|
|
|
|
def compare_max_abs_error(ref, res, str):
|
|
# calculate max abs error
|
|
compare_HF = ref.cpu().numpy().flatten()
|
|
compare_TRT_LLM = res.cpu().numpy().flatten()
|
|
max_abs_error = np.max(abs(compare_TRT_LLM - compare_HF))
|
|
print(str, "max abs error = ", max_abs_error)
|
|
|
|
|
|
class TestPhi(unittest.TestCase):
|
|
|
|
def _gen_hf_phi(self, hidden_act, n_layer, max_length, dtype):
|
|
# Need to use the latest remote code for config and model class.
|
|
gpt_config = AutoConfig.from_pretrained("microsoft/phi-2",
|
|
trust_remote_code=True)
|
|
gpt_config.n_layer = n_layer
|
|
gpt_config.hidden_act = hidden_act
|
|
|
|
hf_gpt = AutoModelForCausalLM.from_config(
|
|
gpt_config, trust_remote_code=True).cuda().to(
|
|
tensorrt_llm._utils.str_dtype_to_torch(dtype)).eval()
|
|
return gpt_config, hf_gpt
|
|
|
|
def _gen_tensorrt_llm_network(self, network, builder, hf_gpt, gpt_config,
|
|
batch_size, beam_width, input_len, output_len,
|
|
dtype, gpt_attention_plugin, rank,
|
|
tensor_parallel,
|
|
apply_query_key_layer_scaling):
|
|
num_layers = gpt_config.num_hidden_layers
|
|
num_heads = gpt_config.num_attention_heads
|
|
hidden_size = gpt_config.hidden_size
|
|
vocab_size = gpt_config.vocab_size
|
|
hidden_act = gpt_config.hidden_act
|
|
max_position_embeddings = gpt_config.max_position_embeddings
|
|
rotary_dim = gpt_config.rotary_dim
|
|
|
|
list(range(tensor_parallel))
|
|
|
|
with net_guard(network):
|
|
kv_dtype = str_dtype_to_trt(dtype)
|
|
# Initialize model
|
|
tensorrt_llm_gpt = tensorrt_llm.models.PhiForCausalLM(
|
|
num_layers=num_layers,
|
|
num_heads=num_heads,
|
|
hidden_size=hidden_size,
|
|
vocab_size=vocab_size,
|
|
hidden_act=hidden_act,
|
|
max_position_embeddings=max_position_embeddings,
|
|
rotary_dim=rotary_dim,
|
|
dtype=kv_dtype,
|
|
mapping=tensorrt_llm.Mapping(world_size=tensor_parallel,
|
|
tp_size=tensor_parallel),
|
|
apply_query_key_layer_scaling=apply_query_key_layer_scaling)
|
|
inputs = tensorrt_llm_gpt.prepare_inputs(batch_size,
|
|
input_len,
|
|
output_len,
|
|
use_cache=True,
|
|
max_beam_width=beam_width)
|
|
|
|
load_from_hf_phi(tensorrt_llm_gpt,
|
|
hf_gpt,
|
|
dtype=dtype,
|
|
rank=rank,
|
|
tp_size=tensor_parallel)
|
|
|
|
# Prepare
|
|
network.set_named_parameters(tensorrt_llm_gpt.named_parameters())
|
|
|
|
tensorrt_llm_gpt(*inputs)
|
|
|
|
return network
|
|
|
|
def _gen_tensorrt_llm_runtime(self,
|
|
log_level,
|
|
dtype,
|
|
world_size,
|
|
rank,
|
|
gpt_config,
|
|
hf_gpt,
|
|
model,
|
|
use_attention_plugin,
|
|
batch_size,
|
|
beam_width,
|
|
input_len,
|
|
output_len,
|
|
use_refit,
|
|
use_ln_gemm_plugin,
|
|
apply_query_key_layer_scaling,
|
|
context_fmha_flag=ContextFMHAType.disabled,
|
|
enable_remove_input_padding=False):
|
|
tensorrt_llm.logger.set_level('error')
|
|
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
|
|
|
|
runtime = None
|
|
builder = Builder()
|
|
fp16 = (dtype == 'float16')
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
builder_config = builder.create_builder_config(
|
|
name='phi',
|
|
precision=dtype,
|
|
timing_cache='model.cache',
|
|
tensor_parallel=world_size, # TP only
|
|
use_refit=use_refit,
|
|
strongly_typed=fp16,
|
|
)
|
|
network = builder.create_network()
|
|
if use_attention_plugin:
|
|
network.plugin_config.set_gpt_attention_plugin(dtype)
|
|
if use_ln_gemm_plugin:
|
|
network.plugin_config.set_gemm_plugin(dtype)
|
|
if enable_remove_input_padding:
|
|
network.plugin_config.enable_remove_input_padding()
|
|
network.plugin_config.set_context_fmha(context_fmha_flag)
|
|
|
|
self._gen_tensorrt_llm_network(network, builder, hf_gpt, gpt_config,
|
|
batch_size, beam_width, input_len,
|
|
output_len, dtype,
|
|
use_attention_plugin, rank,
|
|
world_size,
|
|
apply_query_key_layer_scaling)
|
|
|
|
engine_buffer = builder.build_engine(network, builder_config)
|
|
runtime = tensorrt_llm.runtime.generation._Runtime(
|
|
engine_buffer, mapping)
|
|
|
|
ok = builder.save_timing_cache(builder_config, 'model.cache')
|
|
assert ok, "Failed to save timing cache."
|
|
|
|
return runtime, engine_buffer
|
|
|
|
def load_test_cases():
|
|
test_cases = product([
|
|
ContextFMHAType.disabled, ContextFMHAType.enabled,
|
|
ContextFMHAType.enabled_with_fp32_acc
|
|
], [False, True])
|
|
return test_cases
|
|
|
|
@parameterized.expand(load_test_cases)
|
|
def test_phi_plugin(self, context_fmha_flag, enable_remove_input_padding):
|
|
|
|
# Skip tests that are not supported in pre-ampere architecture
|
|
if getSMVersion() < 80:
|
|
if context_fmha_flag == ContextFMHAType.enabled:
|
|
pytest.skip(
|
|
"ContextFMHAType is not supported in pre-ampere architecture"
|
|
)
|
|
elif context_fmha_flag == ContextFMHAType.enabled_with_fp32_acc:
|
|
pytest.skip(
|
|
"ContextFMHAType with fp32 acc is not supported in pre-ampere architecture"
|
|
)
|
|
|
|
torch.random.manual_seed(0)
|
|
use_refit = False
|
|
apply_query_key_layer_scaling = False
|
|
model = 'phi'
|
|
|
|
log_level = 'error'
|
|
dtype = 'float16'
|
|
world_size = 1
|
|
rank = 0
|
|
hidden_act = 'gelu'
|
|
n_layer = 6
|
|
max_length = 128
|
|
batch_size = 1
|
|
beam_width = 1
|
|
seq_len = 128
|
|
total_seq_len = max_length + seq_len
|
|
use_attention_plugin = True
|
|
use_ln_gemm_plugin = True
|
|
|
|
gpt_config, hf_gpt = self._gen_hf_phi(hidden_act, n_layer,
|
|
seq_len + max_length, dtype)
|
|
runtime, _ = self._gen_tensorrt_llm_runtime(
|
|
log_level, dtype, world_size, rank, gpt_config, hf_gpt, model,
|
|
use_attention_plugin, batch_size, beam_width, seq_len, max_length,
|
|
use_refit, use_ln_gemm_plugin, apply_query_key_layer_scaling,
|
|
context_fmha_flag, enable_remove_input_padding)
|
|
key_value_cache_buffers = []
|
|
head_size = gpt_config.hidden_size // gpt_config.num_attention_heads
|
|
for i in range(gpt_config.num_hidden_layers):
|
|
key_value_cache_buffers.append(
|
|
torch.zeros((
|
|
batch_size,
|
|
2,
|
|
gpt_config.num_attention_heads,
|
|
total_seq_len,
|
|
head_size,
|
|
),
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
|
|
device='cuda'))
|
|
|
|
# compare context
|
|
step = 0
|
|
ctx_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
|
|
|
|
with torch.no_grad():
|
|
hf_outputs = hf_gpt.forward(ctx_ids, use_cache=True)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :]
|
|
|
|
ctx_context_lengths = seq_len * torch.ones(
|
|
(batch_size), dtype=torch.int32, device='cuda')
|
|
ctx_host_request_types = torch.tensor([0] * batch_size,
|
|
dtype=torch.int32)
|
|
ctx_position_ids = torch.tensor(range(seq_len),
|
|
dtype=torch.int32).reshape([
|
|
1, seq_len
|
|
]).expand([batch_size, seq_len]).cuda()
|
|
ctx_last_token_ids = ctx_context_lengths.clone()
|
|
|
|
# We need sequence_lengths start as context_lengths for step 0,
|
|
# and it will be added one after each step.
|
|
sequence_length_buffer = ctx_context_lengths.detach().clone()
|
|
|
|
if enable_remove_input_padding:
|
|
ctx_ids = ctx_ids.view([batch_size * seq_len])
|
|
ctx_position_ids = ctx_position_ids.view([batch_size * seq_len])
|
|
ctx_last_token_ids = torch.cumsum(ctx_last_token_ids, dim=0).int()
|
|
|
|
cache_indirections = [
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
total_seq_len,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda'),
|
|
torch.full((
|
|
batch_size,
|
|
beam_width,
|
|
total_seq_len,
|
|
),
|
|
0,
|
|
dtype=torch.int32,
|
|
device='cuda')
|
|
] # ping-pong buffers
|
|
ctx_buffer = {
|
|
'input_ids': ctx_ids,
|
|
'context_lengths': ctx_context_lengths,
|
|
'host_request_types': ctx_host_request_types,
|
|
'position_ids': ctx_position_ids,
|
|
'last_token_ids': ctx_last_token_ids,
|
|
'cache_indirection': cache_indirections[0],
|
|
}
|
|
if enable_remove_input_padding:
|
|
ctx_buffer['host_context_lengths'] = ctx_context_lengths.cpu()
|
|
ctx_shape = {k: v.shape for k, v in ctx_buffer.items()}
|
|
shape = (batch_size, 2, gpt_config.num_attention_heads, total_seq_len,
|
|
gpt_config.hidden_size // gpt_config.num_attention_heads)
|
|
for i in range(gpt_config.num_hidden_layers):
|
|
ctx_shape[f'past_key_value_{i}'] = shape
|
|
ctx_buffer[f'past_key_value_{i}'] = key_value_cache_buffers[i]
|
|
ctx_buffer[f'present_key_value_{i}'] = key_value_cache_buffers[i]
|
|
ctx_buffer[f'host_max_attention_window_size_{i}'] = torch.tensor(
|
|
[total_seq_len], dtype=torch.int32)
|
|
ctx_shape[f'host_max_attention_window_size_{i}'] = (1, )
|
|
ctx_buffer['sequence_length'] = sequence_length_buffer
|
|
sequence_length_buffer = torch.add(sequence_length_buffer, step)
|
|
ctx_shape['sequence_length'] = ctx_buffer['sequence_length'].shape
|
|
ctx_buffer['host_past_key_value_lengths'] = ctx_context_lengths.cpu()
|
|
ctx_shape['host_past_key_value_lengths'] = ctx_buffer[
|
|
'host_past_key_value_lengths'].shape
|
|
ctx_buffer['host_sink_token_length'] = torch.tensor([0],
|
|
dtype=torch.int32)
|
|
ctx_shape['host_sink_token_length'] = (1, )
|
|
|
|
context = runtime.ctx_context
|
|
runtime._set_shape(context, ctx_shape)
|
|
runtime._set_buffer(context, ctx_buffer)
|
|
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = ctx_buffer['logits']
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
res.cpu().numpy(),
|
|
atol=1e-1)
|
|
|
|
compare_max_abs_error(ref, res, "context logits")
|
|
|
|
v_inner = 16 // (2 if dtype == 'float16' else 4)
|
|
|
|
# compare generation
|
|
step = 1
|
|
step1_id = torch.randint(100, (batch_size, 1)).int().cuda()
|
|
gen_position_ids = torch.ones_like(step1_id).int().cuda() * seq_len
|
|
gen_context_lengths = ctx_context_lengths.clone()
|
|
gen_host_request_types = torch.tensor([1] * batch_size,
|
|
dtype=torch.int32)
|
|
gen_last_token_ids = torch.zeros_like(gen_context_lengths).int().cuda()
|
|
|
|
with torch.no_grad():
|
|
hf_input_ids = torch.cat((ctx_ids.reshape(1, seq_len), step1_id), 1)
|
|
hf_outputs = hf_gpt.forward(hf_input_ids, use_cache=True)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :]
|
|
|
|
if enable_remove_input_padding:
|
|
step1_id = step1_id.view([batch_size])
|
|
gen_position_ids = gen_position_ids.view([batch_size])
|
|
gen_last_token_ids = torch.ones_like(
|
|
gen_context_lengths).int().cuda()
|
|
gen_last_token_ids = torch.cumsum(gen_last_token_ids, dim=0).int()
|
|
|
|
step1_buffer = {
|
|
'input_ids': step1_id,
|
|
'context_lengths': gen_context_lengths,
|
|
'host_request_types': gen_host_request_types,
|
|
'position_ids': gen_position_ids,
|
|
'last_token_ids': gen_last_token_ids,
|
|
'cache_indirection': cache_indirections[1],
|
|
}
|
|
if enable_remove_input_padding:
|
|
step1_buffer['host_context_lengths'] = gen_context_lengths.cpu()
|
|
step1_shape = {k: v.shape for k, v in step1_buffer.items()}
|
|
for i in range(gpt_config.num_hidden_layers):
|
|
step1_shape[f'past_key_value_{i}'] = shape
|
|
step1_shape[f'host_max_attention_window_size_{i}'] = (1, )
|
|
step1_shape['sequence_length'] = (batch_size, )
|
|
step1_shape['host_past_key_value_lengths'] = (batch_size, )
|
|
step1_shape['host_sink_token_length'] = (1, )
|
|
for i in range(gpt_config.num_hidden_layers):
|
|
step1_buffer[f'past_key_value_{i}'] = key_value_cache_buffers[i]
|
|
step1_buffer[f'present_key_value_{i}'] = key_value_cache_buffers[i]
|
|
step1_buffer[f'host_max_attention_window_size_{i}'] = torch.tensor(
|
|
[total_seq_len], dtype=torch.int32)
|
|
# For step 1, the sequence_lengths = context_lengths + 1.
|
|
sequence_length_buffer = torch.add(sequence_length_buffer, step)
|
|
step1_buffer['sequence_length'] = sequence_length_buffer
|
|
step1_buffer['host_past_key_value_lengths'] = torch.tensor(
|
|
[seq_len + step - 1] * batch_size, dtype=torch.int32)
|
|
step1_buffer['host_sink_token_length'] = torch.tensor([0],
|
|
dtype=torch.int32)
|
|
|
|
context = runtime.context_1
|
|
runtime._set_shape(context, step1_shape)
|
|
runtime._set_buffer(context, step1_buffer)
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = step1_buffer['logits']
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
res.cpu().numpy(),
|
|
atol=1e-1)
|
|
|
|
compare_max_abs_error(ref, res, "generation logits")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|