TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/gptSession.h
Kaiyu Xie d8b408e6dc
Update TensorRT-LLM (#148)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-10-27 12:10:00 +08:00

213 lines
7.0 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/cudaEvent.h"
#include "tensorrt_llm/runtime/generationInput.h"
#include "tensorrt_llm/runtime/generationOutput.h"
#include "tensorrt_llm/runtime/gptModelConfig.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/ipcUtils.h"
#include "tensorrt_llm/runtime/samplingConfig.h"
#include "tensorrt_llm/runtime/worldConfig.h"
#include <NvInferRuntime.h>
#include <cstdint>
#include <memory>
#include <string>
#include <vector>
namespace tensorrt_llm::batch_manager::kv_cache_manager
{
class KVCacheManager;
}
namespace tensorrt_llm::runtime
{
namespace utils
{
std::vector<uint8_t> loadEngine(std::string const& enginePath);
}
class TllmRuntime;
class IStatefulGptDecoder;
class NcclCommunicator;
class RuntimeBuffers;
class GptSession
{
public:
using LoggerPtr = std::shared_ptr<nvinfer1::ILogger>;
GptSession(GptModelConfig const& modelConfig, WorldConfig const& worldConfig, void const* engineBuffer,
std::size_t engineSize, LoggerPtr logger = nullptr);
GptSession(GptModelConfig const& modelConfig, WorldConfig const& worldConfig,
std::vector<uint8_t> const& engineBuffer, LoggerPtr logger = nullptr)
: GptSession(modelConfig, worldConfig, engineBuffer.data(), engineBuffer.size(), logger)
{
}
GptSession(GptModelConfig const& modelConfig, WorldConfig const& worldConfig, std::string const& engineFile,
LoggerPtr logger = nullptr)
: GptSession(modelConfig, worldConfig, utils::loadEngine(engineFile), logger)
{
}
[[nodiscard]] nvinfer1::ILogger& getLogger() const;
[[nodiscard]] BufferManager& getBufferManager() const;
[[nodiscard]] GptModelConfig const& getModelConfig() const
{
return mModelConfig;
}
[[nodiscard]] WorldConfig const& getWorldConfig() const
{
return mWorldConfig;
}
[[nodiscard]] int getDevice() const noexcept
{
return mDevice;
}
[[nodiscard]] bool isCudaGraphMode() const noexcept
{
return mCudaGraphMode;
}
void setCudaGraphMode(bool value)
{
mCudaGraphMode = value;
}
//! @brief Initialize buffers for the given sizes.
//! `generate` may be called with batch size and beam width smaller than the setup parameters.
//! @details `maxBatchSize` will be divided by the number of micro batches to initialize each batch buffer.
void setup(SizeType maxBatchSize, SizeType maxBeamWidth, SizeType maxSequenceLength, bool decoderPerRequest,
std::optional<SizeType> maxTokensInPagedKvCache = std::nullopt,
std::optional<SizeType> numMicroBatches = std::nullopt);
void generate(GenerationOutput& outputs, GenerationInput const& inputs, SamplingConfig const& samplingConfig)
{
if (mNumMicroBatches == 1)
generateSingleBatch(outputs, inputs, samplingConfig);
else
generateMultiBatch(outputs, inputs, samplingConfig);
}
private:
void generateSingleBatch(
GenerationOutput& outputs, GenerationInput const& inputs, SamplingConfig const& samplingConfig);
void generateMultiBatch(
GenerationOutput& outputs, GenerationInput const& inputs, SamplingConfig const& samplingConfig);
using KvCacheManager = batch_manager::kv_cache_manager::KVCacheManager;
void createContexts(SizeType numMicroBatches);
void createBuffers(SizeType numMicroBatches);
void createDecoders(SizeType batchSize, SizeType beamWidth, SizeType maxSequenceLength,
nvinfer1::DataType logitsType, bool decoderPerRequest, SizeType numMicroBatches);
void createKvCacheManagers(SizeType batchSize, SizeType beamWidth, SizeType maxSequenceLength,
SizeType numMicroBatches, std::optional<SizeType> maxTokensInPagedKvCache);
void createCustomAllReduceWorkspace(SizeType batchSize, SizeType beamWidth, SizeType maxSequenceLength);
//! @brief Execute decoder on last PP rank, receive decoder output on other PP ranks.
void decoderStepAsync(
ITensor::SharedPtr& outputIds, ITensor::SharedPtr& newTokens, SizeType decoderStep, SizeType microBatchId);
//! @brief Synchronize with the decoder and return the `shouldStop` flag.
bool shouldStopSync(SizeType batchSize, SizeType beamWidth, SizeType microBatchId);
//! @brief Collect final output ids on last PP rank and send them to first PP rank.
//! @details Receives are asynchronous on host, so synchronization is required before access.
void finalizeOutputIds(ITensor& outputIds, SizeType microBatchId);
void kvCacheAddSequences(SizeType beamWidth, SizeType microBatchId);
ITensor::SharedPtr initNewTokens(
GenerationInput const& inputs, SamplingConfig const& samplingConfig, SizeType microBatchId);
class CudaGraphExecutor
{
public:
CudaGraphExecutor() = default;
~CudaGraphExecutor()
{
try
{
clear();
}
catch (std::exception& e)
{
TLLM_LOG_EXCEPTION(e);
}
}
bool hasInstance()
{
return mInstance != nullptr;
}
void clear();
void prepareNextGraph(TllmRuntime const& runtime, SizeType nextContextId);
void launch(CudaStream const& stream);
private:
void create(cudaGraph_t const& graph);
bool update(cudaGraph_t const& graph);
void uploadToStream(CudaStream const& stream);
using cudaGraphExecPtr = cudaGraphExec_t;
cudaGraphExecPtr mInstance;
};
private:
GptModelConfig const mModelConfig;
WorldConfig const mWorldConfig;
int mDevice{-1};
std::shared_ptr<NcclCommunicator> mPipelineComm;
std::shared_ptr<CudaStream> mCommStream;
CudaEvent mCommEvent{};
SizeType mDecoderMaxSequenceLength{};
LoggerPtr mLogger;
std::shared_ptr<TllmRuntime> mRuntime;
SizeType mNumMicroBatches;
// for each micro batch
std::vector<std::shared_ptr<IStatefulGptDecoder>> mDecoders;
std::vector<std::shared_ptr<RuntimeBuffers>> mBuffers;
std::vector<std::shared_ptr<KvCacheManager>> mKvCacheManagers;
std::vector<CudaEvent> mReceivedEvents;
bool mCudaGraphMode{false};
// ping-pong instances
std::array<CudaGraphExecutor, 2> mCudaGraphInstances;
};
} // namespace tensorrt_llm::runtime