mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
213 lines
7.0 KiB
C++
213 lines
7.0 KiB
C++
/*
|
|
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/common.h"
|
|
#include "tensorrt_llm/runtime/cudaEvent.h"
|
|
#include "tensorrt_llm/runtime/generationInput.h"
|
|
#include "tensorrt_llm/runtime/generationOutput.h"
|
|
#include "tensorrt_llm/runtime/gptModelConfig.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
#include "tensorrt_llm/runtime/ipcUtils.h"
|
|
#include "tensorrt_llm/runtime/samplingConfig.h"
|
|
#include "tensorrt_llm/runtime/worldConfig.h"
|
|
|
|
#include <NvInferRuntime.h>
|
|
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace tensorrt_llm::batch_manager::kv_cache_manager
|
|
{
|
|
class KVCacheManager;
|
|
}
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
|
|
namespace utils
|
|
{
|
|
std::vector<uint8_t> loadEngine(std::string const& enginePath);
|
|
}
|
|
|
|
class TllmRuntime;
|
|
class IStatefulGptDecoder;
|
|
class NcclCommunicator;
|
|
class RuntimeBuffers;
|
|
|
|
class GptSession
|
|
{
|
|
public:
|
|
using LoggerPtr = std::shared_ptr<nvinfer1::ILogger>;
|
|
|
|
GptSession(GptModelConfig const& modelConfig, WorldConfig const& worldConfig, void const* engineBuffer,
|
|
std::size_t engineSize, LoggerPtr logger = nullptr);
|
|
|
|
GptSession(GptModelConfig const& modelConfig, WorldConfig const& worldConfig,
|
|
std::vector<uint8_t> const& engineBuffer, LoggerPtr logger = nullptr)
|
|
: GptSession(modelConfig, worldConfig, engineBuffer.data(), engineBuffer.size(), logger)
|
|
{
|
|
}
|
|
|
|
GptSession(GptModelConfig const& modelConfig, WorldConfig const& worldConfig, std::string const& engineFile,
|
|
LoggerPtr logger = nullptr)
|
|
: GptSession(modelConfig, worldConfig, utils::loadEngine(engineFile), logger)
|
|
{
|
|
}
|
|
|
|
[[nodiscard]] nvinfer1::ILogger& getLogger() const;
|
|
|
|
[[nodiscard]] BufferManager& getBufferManager() const;
|
|
|
|
[[nodiscard]] GptModelConfig const& getModelConfig() const
|
|
{
|
|
return mModelConfig;
|
|
}
|
|
|
|
[[nodiscard]] WorldConfig const& getWorldConfig() const
|
|
{
|
|
return mWorldConfig;
|
|
}
|
|
|
|
[[nodiscard]] int getDevice() const noexcept
|
|
{
|
|
return mDevice;
|
|
}
|
|
|
|
[[nodiscard]] bool isCudaGraphMode() const noexcept
|
|
{
|
|
return mCudaGraphMode;
|
|
}
|
|
|
|
void setCudaGraphMode(bool value)
|
|
{
|
|
mCudaGraphMode = value;
|
|
}
|
|
|
|
//! @brief Initialize buffers for the given sizes.
|
|
//! `generate` may be called with batch size and beam width smaller than the setup parameters.
|
|
//! @details `maxBatchSize` will be divided by the number of micro batches to initialize each batch buffer.
|
|
void setup(SizeType maxBatchSize, SizeType maxBeamWidth, SizeType maxSequenceLength, bool decoderPerRequest,
|
|
std::optional<SizeType> maxTokensInPagedKvCache = std::nullopt,
|
|
std::optional<SizeType> numMicroBatches = std::nullopt);
|
|
|
|
void generate(GenerationOutput& outputs, GenerationInput const& inputs, SamplingConfig const& samplingConfig)
|
|
{
|
|
if (mNumMicroBatches == 1)
|
|
generateSingleBatch(outputs, inputs, samplingConfig);
|
|
else
|
|
generateMultiBatch(outputs, inputs, samplingConfig);
|
|
}
|
|
|
|
private:
|
|
void generateSingleBatch(
|
|
GenerationOutput& outputs, GenerationInput const& inputs, SamplingConfig const& samplingConfig);
|
|
|
|
void generateMultiBatch(
|
|
GenerationOutput& outputs, GenerationInput const& inputs, SamplingConfig const& samplingConfig);
|
|
|
|
using KvCacheManager = batch_manager::kv_cache_manager::KVCacheManager;
|
|
|
|
void createContexts(SizeType numMicroBatches);
|
|
void createBuffers(SizeType numMicroBatches);
|
|
void createDecoders(SizeType batchSize, SizeType beamWidth, SizeType maxSequenceLength,
|
|
nvinfer1::DataType logitsType, bool decoderPerRequest, SizeType numMicroBatches);
|
|
void createKvCacheManagers(SizeType batchSize, SizeType beamWidth, SizeType maxSequenceLength,
|
|
SizeType numMicroBatches, std::optional<SizeType> maxTokensInPagedKvCache);
|
|
void createCustomAllReduceWorkspace(SizeType batchSize, SizeType beamWidth, SizeType maxSequenceLength);
|
|
|
|
//! @brief Execute decoder on last PP rank, receive decoder output on other PP ranks.
|
|
void decoderStepAsync(
|
|
ITensor::SharedPtr& outputIds, ITensor::SharedPtr& newTokens, SizeType decoderStep, SizeType microBatchId);
|
|
|
|
//! @brief Synchronize with the decoder and return the `shouldStop` flag.
|
|
bool shouldStopSync(SizeType batchSize, SizeType beamWidth, SizeType microBatchId);
|
|
|
|
//! @brief Collect final output ids on last PP rank and send them to first PP rank.
|
|
//! @details Receives are asynchronous on host, so synchronization is required before access.
|
|
void finalizeOutputIds(ITensor& outputIds, SizeType microBatchId);
|
|
|
|
void kvCacheAddSequences(SizeType beamWidth, SizeType microBatchId);
|
|
|
|
ITensor::SharedPtr initNewTokens(
|
|
GenerationInput const& inputs, SamplingConfig const& samplingConfig, SizeType microBatchId);
|
|
|
|
class CudaGraphExecutor
|
|
{
|
|
public:
|
|
CudaGraphExecutor() = default;
|
|
|
|
~CudaGraphExecutor()
|
|
{
|
|
try
|
|
{
|
|
clear();
|
|
}
|
|
catch (std::exception& e)
|
|
{
|
|
TLLM_LOG_EXCEPTION(e);
|
|
}
|
|
}
|
|
|
|
bool hasInstance()
|
|
{
|
|
return mInstance != nullptr;
|
|
}
|
|
|
|
void clear();
|
|
void prepareNextGraph(TllmRuntime const& runtime, SizeType nextContextId);
|
|
void launch(CudaStream const& stream);
|
|
|
|
private:
|
|
void create(cudaGraph_t const& graph);
|
|
bool update(cudaGraph_t const& graph);
|
|
void uploadToStream(CudaStream const& stream);
|
|
|
|
using cudaGraphExecPtr = cudaGraphExec_t;
|
|
cudaGraphExecPtr mInstance;
|
|
};
|
|
|
|
private:
|
|
GptModelConfig const mModelConfig;
|
|
WorldConfig const mWorldConfig;
|
|
int mDevice{-1};
|
|
std::shared_ptr<NcclCommunicator> mPipelineComm;
|
|
std::shared_ptr<CudaStream> mCommStream;
|
|
CudaEvent mCommEvent{};
|
|
|
|
SizeType mDecoderMaxSequenceLength{};
|
|
|
|
LoggerPtr mLogger;
|
|
std::shared_ptr<TllmRuntime> mRuntime;
|
|
|
|
SizeType mNumMicroBatches;
|
|
// for each micro batch
|
|
std::vector<std::shared_ptr<IStatefulGptDecoder>> mDecoders;
|
|
std::vector<std::shared_ptr<RuntimeBuffers>> mBuffers;
|
|
std::vector<std::shared_ptr<KvCacheManager>> mKvCacheManagers;
|
|
std::vector<CudaEvent> mReceivedEvents;
|
|
|
|
bool mCudaGraphMode{false};
|
|
// ping-pong instances
|
|
std::array<CudaGraphExecutor, 2> mCudaGraphInstances;
|
|
};
|
|
|
|
} // namespace tensorrt_llm::runtime
|