TensorRT-LLMs/cpp/tests/resources/scripts/generate_expected_chatglm6b_output.py
Kaiyu Xie d8b408e6dc
Update TensorRT-LLM (#148)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-10-27 12:10:00 +08:00

165 lines
6.1 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import pathlib as _pl
import sys
from pathlib import Path
import numpy as np
import torch
import transformers
import tensorrt_llm
from tensorrt_llm.quantization import QuantMode
from tensorrt_llm.runtime import (ChatGLM6BHeadModelGenerationSession,
ModelConfig, SamplingConfig)
resources_dir = _pl.Path(
__file__).parent.parent.parent.parent.parent / "examples/chatglm6b"
sys.path.insert(0, str(resources_dir))
from run import parse_arguments # isort:skip
from build import find_engines # isort:skip
MODEL_NAME = "chatglm-6b"
def generate(batch_size, beam_width):
print("generate expected ChatGLM-6B output BatchSize=%d, BeamWidth=%d" %
(batch_size, beam_width))
args = parse_arguments()
if batch_size == 1:
args.input_text = args.input_text[:1]
elif batch_size > 2:
args.input_text += args.input_text[0] * (batch_size - 2)
args.beam_width = beam_width
args.tokenizer_dir = resources_dir / "pyTorchModel"
args.engine_dir = _pl.Path(
__file__).parent.parent / "models/rt_engine/chatglm6b"
tensorrt_llm.logger.set_level(args.log_level)
config_path = os.path.join(args.engine_dir, 'config.json')
with open(config_path, 'r') as f:
config = json.load(f)
assert (config['builder_config']['name'] == MODEL_NAME)
dtype = config['builder_config']['precision']
end_id = config['builder_config']['eos_token_id']
pad_id = config['builder_config']['pad_token_id']
use_gpt_attention_plugin = config['plugin_config']['gpt_attention_plugin']
world_size = config['builder_config']['tensor_parallel']
assert world_size == tensorrt_llm.mpi_world_size(
), f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size,
runtime_rank,
tp_size=world_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
serialize_path = find_engines(Path(args.engine_dir),
dtype=dtype,
tp_size=world_size,
rank=runtime_rank)[0]
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.tokenizer_dir, trust_remote_code=True)
input_text = args.input_text
tokenized = tokenizer(input_text,
return_tensors="pt",
padding=True,
return_length=True)
input_ids = tokenized['input_ids'].int().contiguous().cuda()
input_lengths = tokenized['length'].int().contiguous().cuda()
if use_gpt_attention_plugin:
# when using gpt attention plugin, inputs needs to align at the head
input_ids_padding_right = torch.zeros_like(input_ids) + end_id
for i, sample in enumerate(input_ids):
nPadding = 0
for token in sample:
if token == pad_id:
nPadding += 1
else:
break
input_ids_padding_right[
i, :len(sample[nPadding:])] = sample[nPadding:]
input_ids = input_ids_padding_right
model_config = ModelConfig(
vocab_size=config['builder_config']['vocab_size'],
num_layers=config['builder_config']['num_layers'],
num_heads=config['builder_config']['num_heads'] // world_size,
num_kv_heads=config['builder_config']['num_kv_heads'] // world_size,
hidden_size=config['builder_config']['hidden_size'] // world_size,
gpt_attention_plugin=use_gpt_attention_plugin,
remove_input_padding=config['builder_config']['remove_input_padding'],
model_name=MODEL_NAME,
paged_kv_cache=config['builder_config']['paged_kv_cache'],
quant_mode=QuantMode(config['builder_config']['quant_mode']),
dtype=dtype,
)
sampling_config = SamplingConfig(
end_id=end_id,
pad_id=pad_id,
num_beams=args.beam_width,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
)
sampling_config.random_seed = args.random_seed
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
decoder = ChatGLM6BHeadModelGenerationSession(
model_config,
engine_buffer,
runtime_mapping,
)
decoder.setup(input_ids.size(0), input_ids.size(1), args.max_output_len,
args.beam_width)
output_ids = decoder.decode(input_ids, input_lengths, sampling_config)
torch.cuda.synchronize()
data_path = _pl.Path(__file__).parent.parent / "data/chatglm6b"
if not os.path.exists(str(data_path)):
os.mkdir(data_path)
nBS, nBM = input_ids.size(0), args.beam_width
np.save(
str(data_path) + "/inputId-BS%d-BM%d.npy" % (nBS, nBM),
input_ids.detach().cpu().numpy())
outputId = output_ids.detach().cpu().numpy()
nMaxOutputLength = 0
for single_output in outputId.reshape(nBS * nBM, -1):
nMaxOutputLength = max(nMaxOutputLength,
np.min(np.where(single_output == end_id)))
np.save(
str(data_path) + "/outputId-BS%d-BM%d.npy" % (nBS, nBM),
outputId[:, :, :(nMaxOutputLength + 1)])
if __name__ == '__main__':
generate(batch_size=1, beam_width=1)
generate(batch_size=2, beam_width=1)
generate(batch_size=1, beam_width=2)
print("Finish!")