TensorRT-LLMs/examples/chatglm6b/weight.py
Kaiyu Xie d8b408e6dc
Update TensorRT-LLM (#148)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-10-27 12:10:00 +08:00

134 lines
6.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import numpy as np
import torch
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_torch, torch_to_numpy
from tensorrt_llm.quantization import QuantMode
def load_from_hf(
tensorrt_llm_model,
hf_model,
mapping=None,
dtype="float32",
max_seq_length=2048,
multi_query_mode=False,
):
tensorrt_llm.logger.info("Loading weights from HF ChatGLM-6B")
tik = time.time()
quant_mode = getattr(tensorrt_llm_model, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
use_weight_only = quant_mode.is_weight_only()
torch_type = str_dtype_to_torch(dtype)
tensorrt_llm_model.embedding.weight.value = torch_to_numpy(
hf_model.transformer.word_embeddings.weight.to(
torch_type).detach().cpu())
tensorrt_llm_model.final_layernorm.weight.value = torch_to_numpy(
hf_model.transformer.final_layernorm.weight.to(
torch_type).detach().cpu())
tensorrt_llm_model.final_layernorm.bias.value = torch_to_numpy(
hf_model.transformer.final_layernorm.bias.to(torch_type).detach().cpu())
tensorrt_llm_model.lm_head.weight.value = torch_to_numpy(
hf_model.lm_head.weight.to(torch_type).detach().cpu())
def load_quant_weight(src, value_dst, scale_dst,
plugin_weight_only_quant_type):
v = np.ascontiguousarray(src.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
value_dst.value = torch_to_numpy(processed_torch_weights)
scale_dst.value = torch_to_numpy(torch_weight_scales)
for i in range(28):
tensorrt_llm_model.layers[
i].input_layernorm.weight.value = torch_to_numpy(
hf_model.transformer.layers[i].input_layernorm.weight.to(
torch_type).detach().cpu())
tensorrt_llm_model.layers[
i].input_layernorm.bias.value = torch_to_numpy(
hf_model.transformer.layers[i].input_layernorm.bias.to(
torch_type).detach().cpu())
tensorrt_llm_model.layers[
i].post_layernorm.weight.value = torch_to_numpy(
hf_model.transformer.layers[i].post_attention_layernorm.weight.
to(torch_type).detach().cpu())
tensorrt_llm_model.layers[i].post_layernorm.bias.value = torch_to_numpy(
hf_model.transformer.layers[i].post_attention_layernorm.bias.to(
torch_type).detach().cpu())
tensorrt_llm_model.layers[i].attention.qkv.bias.value = torch_to_numpy(
hf_model.transformer.layers[i].attention.query_key_value.bias.to(
torch_type).detach().cpu())
if use_weight_only:
load_quant_weight(
src=torch_to_numpy(
hf_model.transformer.layers[i].mlp.dense_h_to_4h.weight.to(
torch_type).detach().cpu()),
value_dst=tensorrt_llm_model.layers[i].mlp.fc.weight,
scale_dst=tensorrt_llm_model.layers[i].mlp.fc.per_channel_scale,
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
load_quant_weight(
src=torch_to_numpy(
hf_model.transformer.layers[i].mlp.dense_4h_to_h.weight.to(
torch_type).detach().cpu()),
value_dst=tensorrt_llm_model.layers[i].mlp.proj.weight,
scale_dst=tensorrt_llm_model.layers[i].mlp.proj.
per_channel_scale,
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
load_quant_weight(
src=torch_to_numpy(
hf_model.transformer.layers[i].attention.query_key_value.
weight.to(torch_type).detach().cpu()),
value_dst=tensorrt_llm_model.layers[i].attention.qkv.weight,
scale_dst=tensorrt_llm_model.layers[i].attention.qkv.
per_channel_scale,
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
load_quant_weight(
src=torch_to_numpy(
hf_model.transformer.layers[i].attention.dense.weight.to(
torch_type).detach().cpu()),
value_dst=tensorrt_llm_model.layers[i].attention.dense.weight,
scale_dst=tensorrt_llm_model.layers[i].attention.dense.
per_channel_scale,
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
else:
tensorrt_llm_model.layers[
i].attention.qkv.weight.value = torch_to_numpy(
hf_model.transformer.layers[i].attention.query_key_value.
weight.to(torch_type).detach().cpu())
tensorrt_llm_model.layers[
i].attention.dense.weight.value = torch_to_numpy(
hf_model.transformer.layers[i].attention.dense.weight.to(
torch_type).detach().cpu())
tensorrt_llm_model.layers[i].mlp.fc.weight.value = torch_to_numpy(
hf_model.transformer.layers[i].mlp.dense_h_to_4h.weight.to(
torch_type).detach().cpu())
tensorrt_llm_model.layers[i].mlp.proj.weight.value = torch_to_numpy(
hf_model.transformer.layers[i].mlp.dense_4h_to_h.weight.to(
torch_type).detach().cpu())
tok = time.time()
tensorrt_llm.logger.info("Loading weights finish in %.2fs" % (tok - tik))
return tensorrt_llm_model