mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
1253 lines
57 KiB
Python
1253 lines
57 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import configparser
|
|
import time
|
|
from operator import attrgetter
|
|
from pathlib import Path
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from safetensors import safe_open
|
|
|
|
import tensorrt_llm
|
|
import tensorrt_llm.logger as logger
|
|
from tensorrt_llm._utils import str_dtype_to_torch, torch_to_numpy
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models import LLaMAForCausalLM
|
|
from tensorrt_llm.models.quantized.quant import get_dummy_quant_scales
|
|
from tensorrt_llm.quantization import QuantMode
|
|
|
|
|
|
def get_scaling_factors(
|
|
model_path: Union[str, Path],
|
|
num_layers: int,
|
|
quant_mode: Optional[QuantMode] = None,
|
|
) -> Optional[Dict[str, List[int]]]:
|
|
""" Get the scaling factors for LLaMA model
|
|
|
|
Returns a dictionary of scaling factors for the selected layers of the
|
|
LLaMA model.
|
|
|
|
Args:
|
|
model_path (str): Path to the quantized LLaMA model
|
|
layers (list): List of layers to get the scaling factors for. If None,
|
|
all layers are selected.
|
|
|
|
Returns:
|
|
dict: Dictionary of scaling factors for the selected layers of the
|
|
LLaMA model.
|
|
|
|
example:
|
|
|
|
{
|
|
'qkv_act': qkv_act_scale,
|
|
'qkv_weights': qkv_weights_scale,
|
|
'qkv_output' : qkv_outputs_scale,
|
|
'dense_act': dense_act_scale,
|
|
'dense_weights': dense_weights_scale,
|
|
'fc_act': fc_act_scale,
|
|
'fc_weights': fc_weights_scale,
|
|
'gate_act': gate_act_scale,
|
|
'gate_weights': gate_weights_scale,
|
|
'proj_act': proj_act_scale,
|
|
'proj_weights': proj_weights_scale,
|
|
}
|
|
"""
|
|
|
|
if model_path is None:
|
|
logger.warning(f"--quantized_fp8_model_path not specified. "
|
|
f"Initialize quantization scales automatically.")
|
|
return get_dummy_quant_scales(num_layers)
|
|
weight_dict = np.load(model_path)
|
|
|
|
# yapf: disable
|
|
scaling_factor = {
|
|
'qkv_act': [],
|
|
'qkv_weights': [],
|
|
'qkv_output': [],
|
|
'dense_act': [],
|
|
'dense_weights': [],
|
|
'fc_act': [],
|
|
'fc_weights': [],
|
|
'gate_act': [],
|
|
'gate_weights': [],
|
|
'proj_act': [],
|
|
'proj_weights': [],
|
|
}
|
|
|
|
for layer in range(num_layers):
|
|
scaling_factor['qkv_act'].append(max(
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:q:activation_scaling_factor'].item(),
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:k:activation_scaling_factor'].item(),
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:v:activation_scaling_factor'].item()
|
|
))
|
|
scaling_factor['qkv_weights'].append(max(
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:q:weights_scaling_factor'].item(),
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:k:weights_scaling_factor'].item(),
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:v:weights_scaling_factor'].item()
|
|
))
|
|
if quant_mode is not None and quant_mode.has_fp8_kv_cache():
|
|
# Not calibrarting KV cache.
|
|
scaling_factor['qkv_output'].append(1.0)
|
|
scaling_factor['dense_act'].append(weight_dict[f'_np:layers:{layer}:attention:dense:activation_scaling_factor'].item())
|
|
scaling_factor['dense_weights'].append(weight_dict[f'_np:layers:{layer}:attention:dense:weights_scaling_factor'].item())
|
|
scaling_factor['fc_act'].append(weight_dict[f'_np:layers:{layer}:mlp:fc:activation_scaling_factor'].item())
|
|
scaling_factor['fc_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:fc:weights_scaling_factor'].item())
|
|
scaling_factor['gate_act'].append(weight_dict[f'_np:layers:{layer}:mlp:gate:activation_scaling_factor'].item())
|
|
scaling_factor['gate_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:gate:weights_scaling_factor'].item())
|
|
scaling_factor['proj_act'].append(weight_dict[f'_np:layers:{layer}:mlp:proj:activation_scaling_factor'].item())
|
|
scaling_factor['proj_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:proj:weights_scaling_factor'].item())
|
|
# yapf: enable
|
|
for k, v in scaling_factor.items():
|
|
assert len(v) == num_layers, \
|
|
f'Expect scaling factor {k} of length {num_layers}, got {len(v)}'
|
|
|
|
return scaling_factor
|
|
|
|
|
|
def gen_suffix(rank, use_smooth_quant, quant_per_channel):
|
|
suffix = f"{rank}.bin"
|
|
if use_smooth_quant:
|
|
sq_prefix = "int8."
|
|
if quant_per_channel:
|
|
sq_prefix += "col."
|
|
suffix = sq_prefix + suffix
|
|
return suffix
|
|
|
|
|
|
def extract_layer_idx(name):
|
|
ss = name.split('.')
|
|
for s in ss:
|
|
if s.isdigit():
|
|
return s
|
|
return None
|
|
|
|
|
|
def split(v, tp_size, idx, dim=0):
|
|
if tp_size == 1:
|
|
return v
|
|
if len(v.shape) == 1:
|
|
return np.ascontiguousarray(np.split(v, tp_size)[idx].copy())
|
|
else:
|
|
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx].copy())
|
|
|
|
|
|
def dup_kv_weight(v, num_head, tp_size):
|
|
assert tp_size % num_head == 0
|
|
reps = tp_size // num_head
|
|
head_size = v.shape[0] // num_head
|
|
v = v.reshape(num_head, head_size,
|
|
-1)[:, None, :, :].expand(num_head, reps, head_size,
|
|
v.shape[1])
|
|
return v.reshape(num_head * reps * head_size, -1).clone()
|
|
|
|
|
|
def parse_ft_config(ini_file):
|
|
gpt_config = configparser.ConfigParser()
|
|
gpt_config.read(ini_file)
|
|
|
|
n_embd = gpt_config.getint('llama', 'hidden_size')
|
|
n_head = gpt_config.getint('llama', 'num_attention_heads')
|
|
n_layer = gpt_config.getint('llama', 'num_hidden_layers')
|
|
n_positions = gpt_config.getint('llama', 'max_position_embeddings')
|
|
vocab_size = gpt_config.getint('llama', 'vocab_size')
|
|
hidden_act = gpt_config.get('llama', 'hidden_act')
|
|
inter_size = gpt_config.getint('llama', 'intermediate_size', fallback=None)
|
|
n_kv_head = gpt_config.getint('llama', 'num_key_value_heads', fallback=None)
|
|
|
|
if inter_size is None:
|
|
inter_size = 4 * n_embd
|
|
|
|
return n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size, n_kv_head
|
|
|
|
|
|
def load_from_hf_llama(tensorrt_llm_llama: tensorrt_llm.models.LLaMAForCausalLM,
|
|
hf_llama,
|
|
mapping=Mapping(),
|
|
dtype='float32'):
|
|
tensorrt_llm.logger.info('Loading weights from HF LLaMA...')
|
|
tik = time.time()
|
|
|
|
quant_mode = getattr(tensorrt_llm_llama, 'quant_mode', QuantMode(0))
|
|
if quant_mode.is_int8_weight_only():
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
use_weight_only = quant_mode.is_weight_only()
|
|
num_kv_heads = tensorrt_llm_llama.num_kv_heads
|
|
mha_mode = (num_kv_heads == tensorrt_llm_llama.num_heads)
|
|
|
|
model_params = dict(hf_llama.named_parameters())
|
|
for l in range(hf_llama.config.num_hidden_layers):
|
|
prefix = f'model.layers.{l}.self_attn.'
|
|
q_weight = model_params[prefix + 'q_proj.weight']
|
|
k_weight = model_params[prefix + 'k_proj.weight']
|
|
v_weight = model_params[prefix + 'v_proj.weight']
|
|
if not mha_mode:
|
|
head_size = tensorrt_llm_llama.hidden_size // tensorrt_llm_llama.num_heads
|
|
if num_kv_heads < mapping.tp_size:
|
|
# duplicate the KV heads up to tensor_parallel
|
|
k_weight = dup_kv_weight(k_weight, num_kv_heads,
|
|
mapping.tp_size)
|
|
v_weight = dup_kv_weight(v_weight, num_kv_heads,
|
|
mapping.tp_size)
|
|
assert (k_weight.shape[0] % (mapping.tp_size * head_size)) == 0
|
|
assert (v_weight.shape[0] % (mapping.tp_size * head_size)) == 0
|
|
qkv_weight = [q_weight, k_weight, v_weight]
|
|
else:
|
|
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
|
|
|
|
model_params[prefix + 'qkv_proj.weight'] = qkv_weight
|
|
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
layers_per_pipeline_stage = hf_llama.config.num_hidden_layers // mapping.pp_size
|
|
layers_range = list(
|
|
range(mapping.pp_rank * layers_per_pipeline_stage,
|
|
(mapping.pp_rank + 1) * layers_per_pipeline_stage, 1))
|
|
for k, v in model_params.items():
|
|
if isinstance(v, list):
|
|
v = [torch_to_numpy(vv.to(torch_dtype).detach().cpu()) for vv in v]
|
|
else:
|
|
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
|
|
if 'model.embed_tokens.weight' in k:
|
|
if tensorrt_llm_llama.use_parallel_embedding:
|
|
v = split(v, mapping.tp_size, mapping.tp_rank,
|
|
tensorrt_llm_llama.embedding_sharding_dim)
|
|
if mapping.is_first_pp_rank():
|
|
tensorrt_llm_llama.vocab_embedding.weight.value = v
|
|
elif 'model.norm.weight' in k:
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_llama.ln_f.weight.value = v
|
|
elif 'lm_head.weight' in k:
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_llama.lm_head.weight.value = np.ascontiguousarray(
|
|
split(v, mapping.tp_size, mapping.tp_rank))
|
|
else:
|
|
layer_idx = extract_layer_idx(k)
|
|
if layer_idx is None or int(layer_idx) not in layers_range:
|
|
continue
|
|
idx = int(layer_idx) - mapping.pp_rank * layers_per_pipeline_stage
|
|
if idx >= tensorrt_llm_llama.num_layers:
|
|
continue
|
|
if 'input_layernorm.weight' in k:
|
|
tensorrt_llm_llama.layers[idx].input_layernorm.weight.value = v
|
|
elif 'post_attention_layernorm.weight' in k:
|
|
dst = tensorrt_llm_llama.layers[idx].post_layernorm.weight
|
|
dst.value = v
|
|
elif 'self_attn.qkv_proj.weight' in k:
|
|
dst = tensorrt_llm_llama.layers[idx].attention.qkv.weight
|
|
if not mha_mode:
|
|
assert isinstance(v, list) and len(v) == 3
|
|
wq = split(v[0], mapping.tp_size, mapping.tp_rank)
|
|
wk = split(v[1], mapping.tp_size, mapping.tp_rank)
|
|
wv = split(v[2], mapping.tp_size, mapping.tp_rank)
|
|
split_v = np.concatenate((wq, wk, wv))
|
|
else:
|
|
q_emb = v.shape[0] // 3
|
|
model_emb = v.shape[1]
|
|
v = v.reshape(3, q_emb, model_emb)
|
|
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
split_v = split_v.reshape(3 * (q_emb // mapping.tp_size),
|
|
model_emb)
|
|
if use_weight_only:
|
|
v = np.ascontiguousarray(split_v.transpose())
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(v), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_llama.layers[
|
|
idx].attention.qkv.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
elif 'self_attn.o_proj.weight' in k:
|
|
dst = tensorrt_llm_llama.layers[idx].attention.dense.weight
|
|
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
if use_weight_only:
|
|
v = np.ascontiguousarray(split_v.transpose())
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(v), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_llama.layers[
|
|
idx].attention.dense.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
elif 'mlp.up_proj.weight' in k:
|
|
dst = tensorrt_llm_llama.layers[idx].mlp.gate.weight
|
|
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=0)
|
|
if use_weight_only:
|
|
v = np.ascontiguousarray(split_v.transpose())
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(v), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_llama.layers[
|
|
idx].mlp.gate.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
elif 'mlp.down_proj.weight' in k:
|
|
dst = tensorrt_llm_llama.layers[idx].mlp.proj.weight
|
|
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
if use_weight_only:
|
|
v = np.ascontiguousarray(split_v.transpose())
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(v), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_llama.layers[
|
|
idx].mlp.proj.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
elif 'mlp.gate_proj.weight' in k:
|
|
dst = tensorrt_llm_llama.layers[idx].mlp.fc.weight
|
|
split_v = split(v, mapping.tp_size, mapping.tp_rank, dim=0)
|
|
if use_weight_only:
|
|
v = np.ascontiguousarray(split_v.transpose())
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(v), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_llama.layers[
|
|
idx].mlp.fc.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(split_v)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|
|
return
|
|
|
|
|
|
def load_from_meta_llama(
|
|
tensorrt_llm_llama: tensorrt_llm.models.LLaMAForCausalLM,
|
|
meta_ckpt_dir,
|
|
mapping=Mapping(),
|
|
dtype="float32"):
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
|
|
def gather_ckpts(ckpts):
|
|
gathered = {}
|
|
for k in ckpts[0]:
|
|
d = 0
|
|
if any([n in k for n in ["wo", "w2", "tok"]]):
|
|
d = 1
|
|
if "norm" in k or "rope" in k: # no TP
|
|
gathered[k] = ckpts[0][k].clone()
|
|
else:
|
|
gathered[k] = torch.cat([pt[k] for pt in ckpts], dim=d).clone()
|
|
return gathered
|
|
|
|
def split_ckpt(ckpt, ranks_per_ckpt, ckpt_rank):
|
|
split_ckpt = {}
|
|
for k in ckpt:
|
|
d = 0
|
|
if any([n in k for n in ["wo", "w2", "tok"]]):
|
|
d = 1
|
|
if "norm" in k or "rope" in k: # no TP
|
|
split_ckpt[k] = ckpt[k].clone()
|
|
elif tensorrt_llm_llama.num_kv_heads < mapping.tp_size and any(
|
|
[n in k for n in ["wk", "wv"]]):
|
|
assert mapping.tp_size % tensorrt_llm_llama.num_kv_heads == 0
|
|
# special case: we need to duplicate KV head
|
|
tmp = dup_kv_weight(ckpt[k], tensorrt_llm_llama.num_kv_heads,
|
|
mapping.tp_size)
|
|
split_ckpt[k] = torch.split(tmp,
|
|
tmp.shape[d] // ranks_per_ckpt,
|
|
dim=d)[ckpt_rank].clone()
|
|
else:
|
|
split_ckpt[k] = torch.split(ckpt[k],
|
|
ckpt[k].shape[d] // ranks_per_ckpt,
|
|
dim=d)[ckpt_rank].clone()
|
|
return split_ckpt
|
|
|
|
def get_current_weights(num_ckpts):
|
|
if num_ckpts > mapping.tp_size:
|
|
# combine ckpts
|
|
assert (num_ckpts % mapping.tp_size) == 0
|
|
nf = num_ckpts // mapping.tp_size
|
|
fs = nf * mapping.tp_rank
|
|
file_ids = list(range(fs, fs + nf))
|
|
ckpts = []
|
|
for f in file_ids:
|
|
ckpt = torch.load(Path(meta_ckpt_dir,
|
|
f"consolidated.{f:02d}.pth"),
|
|
map_location="cpu")
|
|
ckpts.append(ckpt)
|
|
return gather_ckpts(ckpts)
|
|
elif num_ckpts < mapping.tp_size:
|
|
# split ckpt
|
|
assert (mapping.tp_size % num_ckpts) == 0
|
|
ranks_per_ckpt = mapping.tp_size // num_ckpts
|
|
ckpt_fid = mapping.tp_rank // ranks_per_ckpt
|
|
ckpt_rank = mapping.tp_rank % ranks_per_ckpt
|
|
nH_per_ckpt = tensorrt_llm_llama.num_heads // num_ckpts
|
|
assert (nH_per_ckpt % ranks_per_ckpt) == 0
|
|
ckpt = torch.load(Path(meta_ckpt_dir,
|
|
f"consolidated.{ckpt_fid:02d}.pth"),
|
|
map_location="cpu")
|
|
return split_ckpt(ckpt, ranks_per_ckpt, ckpt_rank)
|
|
|
|
# num_ckpts == tensor_parallel, 1:1 mapping from files to TP
|
|
return torch.load(Path(meta_ckpt_dir,
|
|
f"consolidated.{mapping.tp_rank:02d}.pth"),
|
|
map_location="cpu")
|
|
|
|
def permute(w, nH, d, dH):
|
|
# due to MQA's wk, nH*dH != d could be true
|
|
return w.view(nH, dH // 2, 2, d).transpose(1, 2).reshape(nH * dH, d)
|
|
|
|
if not hasattr(load_from_meta_llama, "saved_embed"):
|
|
load_from_meta_llama.saved_embed = None
|
|
|
|
def gather_embedding(cur_embed, name: str, num_ckpts):
|
|
if mapping.tp_size == 1:
|
|
# even if num_ckpts > 1, get_current_weights will already have it gathered
|
|
return cur_embed
|
|
if load_from_meta_llama.saved_embed is None:
|
|
embeds = [None] * num_ckpts
|
|
for i in range(num_ckpts):
|
|
ckpt = torch.load(Path(meta_ckpt_dir,
|
|
f"consolidated.{i:02d}.pth"),
|
|
map_location="cpu")
|
|
embeds[i] = ckpt[name]
|
|
embed = torch.cat(embeds, dim=1).to(torch_dtype)
|
|
load_from_meta_llama.saved_embed = torch_to_numpy(
|
|
embed) # cache the embedding, not needed if no refit
|
|
return load_from_meta_llama.saved_embed
|
|
|
|
tensorrt_llm.logger.info('Loading weights from Meta LLaMA checkpoints ...')
|
|
tik = time.time()
|
|
|
|
quant_mode = getattr(tensorrt_llm_llama, 'quant_mode', QuantMode(0))
|
|
if quant_mode.is_int8_weight_only():
|
|
torch.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
torch.quint4x2
|
|
quant_mode.is_weight_only()
|
|
num_kv_heads = tensorrt_llm_llama.num_kv_heads
|
|
mha_mode = (num_kv_heads == tensorrt_llm_llama.num_heads)
|
|
|
|
ckpts = list(Path(meta_ckpt_dir).glob("consolidated.*.pth"))
|
|
num_ckpts = len(ckpts)
|
|
# llama/llama2 doesn't have MQA. So, simplifying loader logic by not worrying about it.
|
|
assert num_kv_heads > 1 or num_kv_heads >= num_ckpts, \
|
|
f"We don't know how the {num_kv_heads} KV heads are distributed among {num_ckpts} checkpoints."
|
|
|
|
head_size = tensorrt_llm_llama.hidden_size // tensorrt_llm_llama.num_heads
|
|
ckpt = get_current_weights(num_ckpts)
|
|
layers_range = list(
|
|
range(mapping.pp_rank * tensorrt_llm_llama.num_layers,
|
|
(mapping.pp_rank + 1) * tensorrt_llm_llama.num_layers, 1))
|
|
|
|
for l in layers_range:
|
|
prefix = f'layers.{l}.attention.'
|
|
q_weight = permute(ckpt[prefix + 'wq.weight'].clone(),
|
|
nH=(tensorrt_llm_llama.num_heads // mapping.tp_size),
|
|
d=tensorrt_llm_llama.hidden_size,
|
|
dH=head_size)
|
|
if num_kv_heads < mapping.tp_size and num_ckpts >= mapping.tp_size:
|
|
assert mapping.tp_size % num_kv_heads == 0
|
|
assert False, "Not supported yet"
|
|
k_weight = permute(ckpt[prefix + 'wk.weight'].clone(),
|
|
nH=((num_kv_heads + mapping.tp_size - 1) //
|
|
mapping.tp_size),
|
|
d=tensorrt_llm_llama.hidden_size,
|
|
dH=head_size)
|
|
v_weight = ckpt[prefix + 'wv.weight'].clone()
|
|
|
|
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
|
|
ckpt[prefix + 'qkv.weight'] = qkv_weight
|
|
|
|
for k, v in ckpt.items():
|
|
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
|
|
if "tok_embeddings" in k:
|
|
if not tensorrt_llm_llama.use_parallel_embedding:
|
|
v = gather_embedding(v, k, num_ckpts)
|
|
elif tensorrt_llm_llama.embedding_sharding_dim == 0:
|
|
# this needs a gather and then resplit along different dims
|
|
v = gather_embedding(v, k, num_ckpts)
|
|
v = split(v, mapping.tp_size, mapping.tp_rank, 0)
|
|
if mapping.is_first_pp_rank():
|
|
tensorrt_llm_llama.vocab_embedding.weight.value = v
|
|
elif "output" in k:
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_llama.lm_head.weight.value = v
|
|
elif k == "norm.weight":
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_llama.ln_f.weight.value = v
|
|
else:
|
|
# layer specific weights
|
|
layer_idx = extract_layer_idx(k)
|
|
if layer_idx is None:
|
|
continue
|
|
idx = int(
|
|
layer_idx) - mapping.pp_rank * tensorrt_llm_llama.num_layers
|
|
if idx >= tensorrt_llm_llama.num_layers:
|
|
continue
|
|
if 'attention_norm.weight' in k:
|
|
tensorrt_llm_llama.layers[idx].input_layernorm.weight.value = v
|
|
elif 'ffn_norm.weight' in k:
|
|
tensorrt_llm_llama.layers[idx].post_layernorm.weight.value = v
|
|
elif 'feed_forward.w3.weight' in k:
|
|
tensorrt_llm_llama.layers[idx].mlp.gate.weight.value = v
|
|
elif 'feed_forward.w2.weight' in k:
|
|
tensorrt_llm_llama.layers[idx].mlp.proj.weight.value = v
|
|
elif 'feed_forward.w1.weight' in k:
|
|
tensorrt_llm_llama.layers[idx].mlp.fc.weight.value = v
|
|
elif 'attention.wo.weight' in k:
|
|
tensorrt_llm_llama.layers[idx].attention.dense.weight.value = v
|
|
elif 'attention.qkv.weight' in k:
|
|
tensorrt_llm_llama.layers[idx].attention.qkv.weight.value = v
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|
|
return
|
|
|
|
|
|
def load_from_binary(tensorrt_llm_llama: LLaMAForCausalLM,
|
|
dir_path,
|
|
mapping=Mapping(),
|
|
fp16=False,
|
|
multi_query_mode=False):
|
|
tensorrt_llm.logger.info('Loading weights from FT...')
|
|
tik = time.time()
|
|
|
|
quant_mode = getattr(tensorrt_llm_llama, 'quant_mode', QuantMode(0))
|
|
|
|
n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size, n_kv_head = parse_ft_config(
|
|
Path(dir_path) / 'config.ini')
|
|
np_dtype = np.float16 if fp16 else np.float32
|
|
|
|
def fromfile(dir_path, name, shape=None, dtype=None):
|
|
dtype = np_dtype if dtype is None else dtype
|
|
p = dir_path + '/' + name
|
|
if Path(p).exists():
|
|
t = np.fromfile(p, dtype=dtype)
|
|
if shape is not None:
|
|
t = t.reshape(shape)
|
|
return t
|
|
return None
|
|
|
|
def set_smoothquant_scale_factors(module,
|
|
pre_scale_weight,
|
|
dir_path,
|
|
basename,
|
|
shape,
|
|
per_tok_dyn,
|
|
per_channel,
|
|
is_qkv=False,
|
|
rank=None):
|
|
suffix = "bin"
|
|
if per_channel:
|
|
if rank is not None:
|
|
suffix = f"{rank}." + suffix
|
|
suffix = "col." + suffix
|
|
|
|
col_shape = shape if (per_channel or is_qkv) else [1, 1]
|
|
|
|
if per_tok_dyn:
|
|
if pre_scale_weight is not None:
|
|
pre_scale_weight.value = np.array([1.0], dtype=np.float32)
|
|
if is_qkv and not per_channel:
|
|
t = fromfile(dir_path,
|
|
f"{basename}scale_w_quant_orig.{rank}.{suffix}",
|
|
col_shape, np.float32)
|
|
else:
|
|
t = fromfile(dir_path, f"{basename}scale_w_quant_orig.{suffix}",
|
|
col_shape, np.float32)
|
|
module.per_channel_scale.value = t
|
|
else:
|
|
t = fromfile(dir_path, f"{basename}scale_x_orig_quant.bin", [1],
|
|
np.float32)
|
|
pre_scale_weight.value = t
|
|
if is_qkv:
|
|
t = fromfile(dir_path,
|
|
f"{basename}scale_y_accum_quant.{rank}.{suffix}",
|
|
col_shape, np.float32)
|
|
else:
|
|
t = fromfile(dir_path,
|
|
f"{basename}scale_y_accum_quant.{suffix}",
|
|
col_shape, np.float32)
|
|
module.per_channel_scale.value = t
|
|
t = fromfile(dir_path, f"{basename}scale_y_quant_orig.bin", [1, 1],
|
|
np.float32)
|
|
module.act_scale.value = t
|
|
|
|
def set_smoother(module, dir_path, base_name, shape, rank):
|
|
suffix = f"{rank}.bin"
|
|
t = fromfile(dir_path, f"{base_name}.smoother.{suffix}", shape,
|
|
np.float32)
|
|
module.smoother.value = t
|
|
|
|
# Determine the quantization mode.
|
|
quant_mode = getattr(tensorrt_llm_llama, "quant_mode", QuantMode(0))
|
|
if quant_mode.is_int8_weight_only():
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
# Do we use SmoothQuant?
|
|
use_smooth_quant = quant_mode.has_act_and_weight_quant()
|
|
# Do we use quantization per token?
|
|
quant_per_token_dyn = quant_mode.has_per_token_dynamic_scaling()
|
|
# Do we use quantization per channel?
|
|
quant_per_channel = quant_mode.has_per_channel_scaling()
|
|
|
|
# Do we use INT4/INT8 weight-only?
|
|
use_weight_only = quant_mode.is_weight_only()
|
|
|
|
# Int8 KV cache
|
|
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
|
|
|
|
# Debug
|
|
suffix = gen_suffix(mapping.tp_rank, use_smooth_quant, quant_per_channel)
|
|
# The type of weights.
|
|
w_type = np_dtype if not use_smooth_quant else np.int8
|
|
|
|
if mapping.is_first_pp_rank():
|
|
tensorrt_llm_llama.vocab_embedding.weight.value = (fromfile(
|
|
dir_path, 'vocab_embedding.weight.bin', [vocab_size, n_embd]))
|
|
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_llama.ln_f.weight.value = (fromfile(
|
|
dir_path, 'ln_f.weight.bin'))
|
|
# share input embedding
|
|
lm_head_weight = fromfile(dir_path, 'lm_head.weight.bin',
|
|
[vocab_size, n_embd])
|
|
|
|
if vocab_size % mapping.tp_size != 0:
|
|
# padding
|
|
vocab_size_padded = tensorrt_llm_llama.lm_head.out_features * mapping.tp_size
|
|
pad_width = vocab_size_padded - vocab_size
|
|
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0)
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_llama.lm_head.weight.value = np.ascontiguousarray(
|
|
split(lm_head_weight, mapping.tp_size, mapping.tp_rank))
|
|
|
|
layers_range = list(
|
|
range(mapping.pp_rank * tensorrt_llm_llama.num_layers,
|
|
(mapping.pp_rank + 1) * tensorrt_llm_llama.num_layers, 1))
|
|
|
|
for i in layers_range:
|
|
n_groups = n_head // n_kv_head
|
|
c_attn_out_dim = (
|
|
3 * n_embd // mapping.tp_size) if not multi_query_mode else (
|
|
n_embd // mapping.tp_size +
|
|
(n_embd // n_head * n_groups) // mapping.tp_size * 2)
|
|
idx = i - mapping.pp_rank * tensorrt_llm_llama.num_layers
|
|
tensorrt_llm_llama.layers[idx].input_layernorm.weight.value = (fromfile(
|
|
dir_path, 'model.layers.' + str(i) + '.input_layernorm.weight.bin'))
|
|
t = fromfile(
|
|
dir_path, 'model.layers.' + str(i) +
|
|
'.attention.query_key_value.weight.' + suffix,
|
|
[n_embd, c_attn_out_dim], w_type)
|
|
if t is not None:
|
|
dst = tensorrt_llm_llama.layers[idx].attention.qkv.weight
|
|
if use_smooth_quant:
|
|
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_llama.layers[idx].attention.qkv,
|
|
tensorrt_llm_llama.layers[idx].input_layernorm.scale_to_int,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.query_key_value.',
|
|
[1, c_attn_out_dim],
|
|
quant_per_token_dyn,
|
|
quant_per_channel,
|
|
rank=mapping.tp_rank,
|
|
is_qkv=True)
|
|
elif use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_llama.layers[
|
|
i].attention.qkv.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
|
|
dst = tensorrt_llm_llama.layers[idx].attention.dense.weight
|
|
t = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.dense.weight.' + suffix,
|
|
[n_embd // mapping.tp_size, n_embd], w_type)
|
|
if use_smooth_quant:
|
|
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
dense_scale = getattr(tensorrt_llm_llama.layers[idx].attention,
|
|
"quantization_scaling_factor", None)
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_llama.layers[idx].attention.dense, dense_scale,
|
|
dir_path, 'model.layers.' + str(i) + '.attention.dense.',
|
|
[1, n_embd], quant_per_token_dyn, quant_per_channel)
|
|
set_smoother(tensorrt_llm_llama.layers[idx].attention.dense,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.dense',
|
|
[1, n_embd // mapping.tp_size], mapping.tp_rank)
|
|
elif use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_llama.layers[
|
|
i].attention.dense.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
|
|
dst = tensorrt_llm_llama.layers[idx].post_layernorm.weight
|
|
dst.value = fromfile(
|
|
dir_path, 'model.layers.' + str(i) + '.post_layernorm.weight.bin')
|
|
|
|
t = fromfile(dir_path,
|
|
'model.layers.' + str(i) + '.mlp.fc.weight.' + suffix,
|
|
[n_embd, inter_size // mapping.tp_size], w_type)
|
|
|
|
if use_smooth_quant:
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.fc.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_llama.layers[idx].mlp.fc,
|
|
tensorrt_llm_llama.layers[idx].post_layernorm.scale_to_int,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.fc.',
|
|
[1, inter_size // mapping.tp_size],
|
|
quant_per_token_dyn,
|
|
quant_per_channel,
|
|
rank=mapping.tp_rank)
|
|
elif use_weight_only:
|
|
dst = tensorrt_llm_llama.layers[i].mlp.fc.weight
|
|
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_llama.layers[i].mlp.fc.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.fc.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
|
|
t = fromfile(dir_path,
|
|
'model.layers.' + str(i) + '.mlp.gate.weight.' + suffix,
|
|
[n_embd, inter_size // mapping.tp_size], w_type)
|
|
if use_smooth_quant:
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.gate.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_llama.layers[idx].mlp.gate,
|
|
tensorrt_llm_llama.layers[idx].post_layernorm.scale_to_int,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.gate.',
|
|
[1, inter_size // mapping.tp_size],
|
|
quant_per_token_dyn,
|
|
quant_per_channel,
|
|
rank=mapping.tp_rank)
|
|
elif use_weight_only:
|
|
dst = tensorrt_llm_llama.layers[i].mlp.gate.weight
|
|
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_llama.layers[i].mlp.gate.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.gate.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
|
|
t = fromfile(dir_path,
|
|
'model.layers.' + str(i) + '.mlp.proj.weight.' + suffix,
|
|
[inter_size // mapping.tp_size, n_embd], w_type)
|
|
if use_smooth_quant:
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.proj.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
proj_scale = getattr(tensorrt_llm_llama.layers[idx].mlp,
|
|
"quantization_scaling_factor", None)
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_llama.layers[idx].mlp.proj, proj_scale, dir_path,
|
|
'model.layers.' + str(i) + '.mlp.proj.', [1, n_embd],
|
|
quant_per_token_dyn, quant_per_channel)
|
|
set_smoother(tensorrt_llm_llama.layers[idx].mlp.proj, dir_path,
|
|
'model.layers.' + str(i) + '.mlp.proj',
|
|
[1, inter_size // mapping.tp_size], mapping.tp_rank)
|
|
elif use_weight_only:
|
|
dst = tensorrt_llm_llama.layers[i].mlp.proj.weight
|
|
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_llama.layers[i].mlp.proj.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
tensorrt_llm_llama.layers[idx].mlp.proj.weight.value = (
|
|
np.ascontiguousarray(np.transpose(t, [1, 0])))
|
|
|
|
if use_int8_kv_cache:
|
|
t = fromfile(
|
|
dir_path, 'model.layers.' + str(i) +
|
|
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
|
|
np.float32)
|
|
tensorrt_llm_llama.layers[
|
|
idx].attention.kv_orig_quant_scale.value = 1.0 / t
|
|
tensorrt_llm_llama.layers[
|
|
idx].attention.kv_quant_orig_scale.value = t
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|
|
|
|
|
|
def load_from_gptq_llama(tensorrt_llm_llama,
|
|
quant_ckpt_path,
|
|
mapping=Mapping(),
|
|
dtype="float16"):
|
|
tensorrt_llm.logger.info(
|
|
'Loading weights from groupwise GPTQ LLaMA safetensors...')
|
|
tik = time.time()
|
|
|
|
if quant_ckpt_path.endswith(".safetensors"):
|
|
groupwise_qweight_safetensors = safe_open(quant_ckpt_path,
|
|
framework="pt",
|
|
device=0)
|
|
model_params = {
|
|
key: groupwise_qweight_safetensors.get_tensor(key)
|
|
for key in groupwise_qweight_safetensors.keys()
|
|
}
|
|
elif quant_ckpt_path.endswith(".pt"):
|
|
model_params = torch.load(quant_ckpt_path,
|
|
map_location=torch.device('cpu'))
|
|
else:
|
|
assert False, "Quantized checkpoint format not supported!"
|
|
|
|
def unpack_int32_into_int8(w_packed):
|
|
# Unpack inputs packed in int32/float32 into uint4 and store them in int8 format
|
|
w_packed_int4x2 = w_packed.contiguous().view(torch.uint8)
|
|
w_unpacked = torch.zeros(w_packed_int4x2.shape[0],
|
|
w_packed_int4x2.shape[1] * 2,
|
|
dtype=torch.int8)
|
|
w_unpacked[:, ::2] = w_packed_int4x2 % 16
|
|
w_unpacked[:, 1::2] = w_packed_int4x2 // 16
|
|
return w_unpacked.contiguous()
|
|
|
|
def preprocess_groupwise_weight_params(weight_name,
|
|
qweight_int32=None,
|
|
qzeros_int32=None,
|
|
scales_fp16=None):
|
|
if weight_name is not None:
|
|
qweight_int32 = model_params[weight_name].cpu()
|
|
qzeros_int32 = model_params[weight_name[:-7] + 'qzeros'].cpu()
|
|
scales_fp16 = model_params[weight_name[:-7] + 'scales'].cpu()
|
|
|
|
UINT4_TO_INT4_FLAG = 1
|
|
GPTQ_FLAG = 1
|
|
packer = torch.ops.fastertransformer.pack_int8_tensor_to_packed_int4
|
|
preprocessor = torch.ops.fastertransformer.preprocess_weights_for_mixed_gemm
|
|
|
|
qweight_unpacked_int8 = unpack_int32_into_int8(
|
|
qweight_int32.T).T.contiguous() - 8
|
|
qweight_interleaved = preprocessor(packer(qweight_unpacked_int8),
|
|
torch.quint4x2).view(torch.int8)
|
|
# zeros = zeros * scales
|
|
qzeros_unpacked_int32 = unpack_int32_into_int8(qzeros_int32)
|
|
zeros_x_scales_fp16 = (-qzeros_unpacked_int32 + 8 * UINT4_TO_INT4_FLAG -
|
|
GPTQ_FLAG) * scales_fp16
|
|
zeros_x_scales_fp16 = zeros_x_scales_fp16.half()
|
|
|
|
# return processed interleaved weight, original scales and zeros * scales
|
|
return qweight_interleaved.contiguous(), scales_fp16.contiguous(
|
|
), zeros_x_scales_fp16.contiguous()
|
|
|
|
layer_ids = [
|
|
extract_layer_idx(key) for key in groupwise_qweight_safetensors.keys()
|
|
]
|
|
layer_ids = [
|
|
int(layer_idx) for layer_idx in layer_ids if layer_idx is not None
|
|
]
|
|
num_hidden_layers = max(layer_ids) + 1
|
|
num_kv_heads = tensorrt_llm_llama.num_kv_heads
|
|
mha_mode = (num_kv_heads == tensorrt_llm_llama.num_heads)
|
|
suffixs = ['qweight', 'qzeros', 'scales']
|
|
|
|
layers_per_pipeline_stage = num_hidden_layers // mapping.pp_size
|
|
layers_range = list(
|
|
range(mapping.pp_rank * layers_per_pipeline_stage,
|
|
(mapping.pp_rank + 1) * layers_per_pipeline_stage, 1))
|
|
|
|
for l in layers_range:
|
|
prefix = f'model.layers.{l}.self_attn.'
|
|
split_qkv_suf = []
|
|
|
|
for suf in suffixs:
|
|
q_part = model_params[prefix + 'q_proj.' + suf].cpu()
|
|
k_part = model_params[prefix + 'k_proj.' + suf].cpu()
|
|
v_part = model_params[prefix + 'v_proj.' + suf].cpu()
|
|
q_part = q_part.split(q_part.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
k_part = k_part.split(k_part.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
v_part = v_part.split(v_part.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
split_qkv = torch.cat([q_part, k_part, v_part], dim=1)
|
|
split_qkv_suf.append(split_qkv)
|
|
|
|
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
|
|
None, split_qkv_suf[0], split_qkv_suf[1], split_qkv_suf[2])
|
|
|
|
idx = l - mapping.pp_rank * layers_per_pipeline_stage
|
|
tensorrt_llm_llama.layers[
|
|
idx].attention.qkv.qweight.value = th_qweight.numpy()
|
|
tensorrt_llm_llama.layers[
|
|
idx].attention.qkv.scale.value = th_zero.numpy()
|
|
tensorrt_llm_llama.layers[
|
|
idx].attention.qkv.zero.value = th_scale.numpy()
|
|
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
|
|
for k, v in model_params.items():
|
|
if isinstance(v, list):
|
|
v = [torch_to_numpy(vv.to(torch_dtype).detach().cpu()) for vv in v]
|
|
else:
|
|
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
|
|
if 'model.embed_tokens.weight' in k:
|
|
if mapping.is_first_pp_rank():
|
|
tensorrt_llm_llama.vocab_embedding.weight.value = v
|
|
elif 'model.norm.weight' in k:
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_llama.ln_f.weight.value = v
|
|
elif 'lm_head.weight' in k:
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_llama.lm_head.weight.value = np.ascontiguousarray(
|
|
split(v, mapping.tp_size, mapping.tp_rank))
|
|
else:
|
|
layer_idx = extract_layer_idx(k)
|
|
if layer_idx is None:
|
|
continue
|
|
idx = int(layer_idx)
|
|
if idx not in layers_range:
|
|
continue
|
|
idx = idx - mapping.pp_rank * layers_per_pipeline_stage
|
|
|
|
if 'input_layernorm.weight' in k:
|
|
tensorrt_llm_llama.layers[idx].input_layernorm.weight.value = v
|
|
elif 'post_attention_layernorm.weight' in k:
|
|
tensorrt_llm_llama.layers[idx].post_layernorm.weight.value = v
|
|
elif 'self_attn.o_proj.qweight' in k:
|
|
split_v_suf = []
|
|
for suf in suffixs:
|
|
v = model_params[k[:-7] + suf].cpu()
|
|
split_v = v.split(v.shape[0] // mapping.tp_size,
|
|
dim=0)[mapping.tp_rank]
|
|
split_v_suf.append(split_v)
|
|
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
|
|
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
|
|
tensorrt_llm_llama.layers[
|
|
idx].attention.dense.qweight.value = th_qweight.numpy()
|
|
tensorrt_llm_llama.layers[
|
|
idx].attention.dense.scale.value = th_zero.numpy()
|
|
tensorrt_llm_llama.layers[
|
|
idx].attention.dense.zero.value = th_scale.numpy()
|
|
elif 'mlp.up_proj.qweight' in k:
|
|
split_v_suf = []
|
|
for suf in suffixs:
|
|
v = model_params[k[:-7] + suf].cpu()
|
|
split_v = v.split(v.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
split_v_suf.append(split_v)
|
|
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
|
|
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.gate.qweight.value = th_qweight.numpy()
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.gate.scale.value = th_zero.numpy()
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.gate.zero.value = th_scale.numpy()
|
|
elif 'mlp.down_proj.qweight' in k:
|
|
split_v_suf = []
|
|
for suf in suffixs:
|
|
v = model_params[k[:-7] + suf].cpu()
|
|
split_v = v.split(v.shape[0] // mapping.tp_size,
|
|
dim=0)[mapping.tp_rank]
|
|
split_v_suf.append(split_v)
|
|
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
|
|
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.proj.qweight.value = th_qweight.numpy()
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.proj.scale.value = th_zero.numpy()
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.proj.zero.value = th_scale.numpy()
|
|
elif 'mlp.gate_proj.qweight' in k:
|
|
split_v_suf = []
|
|
for suf in suffixs:
|
|
v = model_params[k[:-7] + suf].cpu()
|
|
split_v = v.split(v.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
split_v_suf.append(split_v)
|
|
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
|
|
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.fc.qweight.value = th_qweight.numpy()
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.fc.scale.value = th_zero.numpy()
|
|
tensorrt_llm_llama.layers[
|
|
idx].mlp.fc.zero.value = th_scale.numpy()
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|
|
return
|
|
|
|
|
|
def load_from_awq_llama(tensorrt_llm_llama: LLaMAForCausalLM,
|
|
quant_ckpt_path,
|
|
mapping=Mapping(),
|
|
dtype="float16"):
|
|
tensorrt_llm.logger.info(
|
|
'Loading weights from groupwise AWQ LLaMA safetensors...')
|
|
tik = time.time()
|
|
|
|
if quant_ckpt_path.endswith(".safetensors"):
|
|
groupwise_qweight_safetensors = safe_open(quant_ckpt_path,
|
|
framework="pt",
|
|
device=0)
|
|
awq_llama = {
|
|
key: groupwise_qweight_safetensors.get_tensor(key)
|
|
for key in groupwise_qweight_safetensors.keys()
|
|
}
|
|
elif quant_ckpt_path.endswith(".pt"):
|
|
awq_llama = torch.load(quant_ckpt_path,
|
|
map_location=torch.device('cpu'))
|
|
else:
|
|
assert False, "Quantized checkpoint format not supported!"
|
|
|
|
group_size = awq_llama["model.layers.0.self_attn.o_proj.weight"].numel(
|
|
) // awq_llama[
|
|
"model.layers.0.self_attn.o_proj.weight_quantizer._amax"].numel()
|
|
|
|
awq_llama_block_names = [
|
|
"input_layernorm.weight",
|
|
"post_attention_layernorm.weight",
|
|
]
|
|
|
|
tensorrt_llm_llama_block_names = [
|
|
"input_layernorm.weight",
|
|
"post_layernorm.weight",
|
|
]
|
|
|
|
getattr(tensorrt_llm_llama, 'quant_mode', QuantMode(0))
|
|
|
|
packer = torch.ops.fastertransformer.pack_int8_tensor_to_packed_int4
|
|
preprocessor = torch.ops.fastertransformer.preprocess_weights_for_mixed_gemm
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
|
|
def AWQ_quantize_pack_preprocess(weight, scale):
|
|
scale = scale.repeat_interleave(group_size, dim=0)
|
|
weight = weight / scale
|
|
qweight_int8 = torch.clamp(torch.round(weight.cuda()).char(), -8, 7)
|
|
int4_weight = packer(qweight_int8.cpu())
|
|
int4_weight = preprocessor(int4_weight, torch.quint4x2)
|
|
return int4_weight.view(torch.int8).cpu().numpy()
|
|
|
|
def process_and_assign_weight(awq_llama, mPrefix, mOp, tp_dim=0):
|
|
weight = awq_llama[mPrefix + ".weight"].T.contiguous()
|
|
[k, n] = weight.shape
|
|
weight = weight.split(weight.shape[tp_dim] // mapping.tp_size,
|
|
dim=tp_dim)[mapping.tp_rank]
|
|
amax = awq_llama[mPrefix + ".weight_quantizer._amax"].reshape(
|
|
(n, int(k / group_size))).T.contiguous()
|
|
amax = amax.split(amax.shape[tp_dim] // mapping.tp_size,
|
|
dim=tp_dim)[mapping.tp_rank]
|
|
pre_quant_scale = awq_llama[
|
|
mPrefix + ".input_quantizer._pre_quant_scale"].reshape((1, k))
|
|
if tp_dim == 0:
|
|
pre_quant_scale = pre_quant_scale.split(k // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
scale = amax / 8.0
|
|
mOp.qweight.value = AWQ_quantize_pack_preprocess(weight, scale)
|
|
mOp.scale.value = scale.to(torch_dtype).cpu().numpy()
|
|
mOp.pre_quant_scale.value = pre_quant_scale.to(
|
|
torch_dtype).cpu().numpy()
|
|
|
|
def deSmooth(weight, pre_quant_scale):
|
|
[k, n] = weight.shape
|
|
pre_quant_scale = pre_quant_scale.repeat(
|
|
(n, 1)).transpose(1, 0).contiguous()
|
|
weight = weight * pre_quant_scale
|
|
return weight
|
|
|
|
def reSmooth(weight, pre_quant_scale):
|
|
[k, n] = weight.shape
|
|
pre_quant_scale = pre_quant_scale.repeat(
|
|
(n, 1)).transpose(1, 0).contiguous()
|
|
weight = weight / pre_quant_scale
|
|
return weight
|
|
|
|
def get_scale(weight):
|
|
weight = weight.T.contiguous()
|
|
[n, k] = weight.shape
|
|
weight = weight.reshape(n, int(k / group_size), group_size)
|
|
weight = torch.abs(weight.reshape(-1, group_size))
|
|
amax, idx = weight.max(1)
|
|
amax = amax.reshape(n, int(k / group_size)).T.contiguous()
|
|
return amax / 8
|
|
|
|
def reSmooth_and_get_scale(weight, pre_quant_scale, avg_pre_quant_scale):
|
|
weight = deSmooth(weight, pre_quant_scale)
|
|
weight = reSmooth(weight, avg_pre_quant_scale)
|
|
scale = get_scale(weight)
|
|
return weight, scale
|
|
|
|
def process_and_assign_qkv_weight(awq_llama, prefix, mOp):
|
|
q_weight = awq_llama[prefix + "self_attn.q_proj.weight"].T.contiguous()
|
|
k_weight = awq_llama[prefix + "self_attn.k_proj.weight"].T.contiguous()
|
|
v_weight = awq_llama[prefix + "self_attn.v_proj.weight"].T.contiguous()
|
|
k = q_weight.shape[0]
|
|
|
|
q_weight = q_weight.split(q_weight.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
k_weight = k_weight.split(k_weight.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
v_weight = v_weight.split(v_weight.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
|
|
q_pre_quant_scale = awq_llama[
|
|
prefix +
|
|
"self_attn.q_proj.input_quantizer._pre_quant_scale"].reshape((1, k))
|
|
k_pre_quant_scale = awq_llama[
|
|
prefix +
|
|
"self_attn.k_proj.input_quantizer._pre_quant_scale"].reshape((1, k))
|
|
v_pre_quant_scale = awq_llama[
|
|
prefix +
|
|
"self_attn.v_proj.input_quantizer._pre_quant_scale"].reshape((1, k))
|
|
|
|
qkv_pre_quant_scale = (q_pre_quant_scale + k_pre_quant_scale +
|
|
v_pre_quant_scale) / 3.0
|
|
q_weight, q_scale = reSmooth_and_get_scale(q_weight, q_pre_quant_scale,
|
|
qkv_pre_quant_scale)
|
|
k_weight, k_scale = reSmooth_and_get_scale(k_weight, k_pre_quant_scale,
|
|
qkv_pre_quant_scale)
|
|
v_weight, v_scale = reSmooth_and_get_scale(v_weight, v_pre_quant_scale,
|
|
qkv_pre_quant_scale)
|
|
|
|
qkv_weights = torch.cat((q_weight, k_weight, v_weight), dim=1)
|
|
qkv_scale = torch.cat((q_scale, k_scale, v_scale), dim=1)
|
|
|
|
mOp.pre_quant_scale.value = qkv_pre_quant_scale.to(
|
|
torch_dtype).cpu().numpy()
|
|
mOp.qweight.value = AWQ_quantize_pack_preprocess(qkv_weights, qkv_scale)
|
|
mOp.scale.value = qkv_scale.to(torch_dtype).cpu().numpy()
|
|
|
|
# Check if we need to pad vocab
|
|
v = awq_llama.get('model.embed_tokens.weight')
|
|
[vocab_size, k] = v.shape
|
|
pad_vocab = False
|
|
pad_vocab_size = vocab_size
|
|
if vocab_size % 64 != 0:
|
|
pad_vocab = True
|
|
pad_vocab_size = int((vocab_size + 63) / 64) * 64
|
|
if pad_vocab:
|
|
new_v = torch.zeros([pad_vocab_size, k])
|
|
new_v[:vocab_size, :] = v
|
|
v = new_v
|
|
if mapping.is_first_pp_rank():
|
|
tensorrt_llm_llama.vocab_embedding.weight.value = v.to(
|
|
torch_dtype).cpu().numpy()
|
|
|
|
layer_ids = [extract_layer_idx(key) for key in awq_llama.keys()]
|
|
layer_ids = [
|
|
int(layer_idx) for layer_idx in layer_ids if layer_idx is not None
|
|
]
|
|
|
|
num_hidden_layers = max(layer_ids) + 1
|
|
layers_per_pipeline_stage = num_hidden_layers // mapping.pp_size
|
|
layers_range = list(
|
|
range(mapping.pp_rank * layers_per_pipeline_stage,
|
|
(mapping.pp_rank + 1) * layers_per_pipeline_stage, 1))
|
|
|
|
for layer_idx in layers_range:
|
|
prefix = "model.layers." + str(layer_idx) + "."
|
|
tensorrt_llm.logger.info(f'Process weights in layer: {layer_idx}')
|
|
for idx, awq_attr in enumerate(awq_llama_block_names):
|
|
v = awq_llama[prefix + awq_attr]
|
|
layer = attrgetter(tensorrt_llm_llama_block_names[idx])(
|
|
tensorrt_llm_llama.layers[layer_idx])
|
|
setattr(layer, 'value', v.to(torch_dtype).cpu().numpy())
|
|
|
|
# Attention QKV Linear
|
|
# concatenate the Q, K, V layers weights.
|
|
process_and_assign_qkv_weight(
|
|
awq_llama, prefix,
|
|
tensorrt_llm_llama.layers[layer_idx].attention.qkv)
|
|
|
|
# Attention Dense (out_proj) Linear
|
|
mPrefix = prefix + "self_attn.o_proj"
|
|
mOp = tensorrt_llm_llama.layers[layer_idx].attention.dense
|
|
process_and_assign_weight(awq_llama, mPrefix, mOp, 0)
|
|
|
|
# MLP up_proj (mlp.gate) Linear
|
|
mPrefix = prefix + "mlp.up_proj"
|
|
mOp = tensorrt_llm_llama.layers[layer_idx].mlp.gate
|
|
process_and_assign_weight(awq_llama, mPrefix, mOp, 1)
|
|
|
|
# MLP down_proj (mlp.proj) Linear
|
|
mPrefix = prefix + "mlp.down_proj"
|
|
mOp = tensorrt_llm_llama.layers[layer_idx].mlp.proj
|
|
process_and_assign_weight(awq_llama, mPrefix, mOp, 0)
|
|
|
|
# MLP gate_proj (mlp.fc) Linear
|
|
mPrefix = prefix + "mlp.gate_proj"
|
|
mOp = tensorrt_llm_llama.layers[layer_idx].mlp.fc
|
|
process_and_assign_weight(awq_llama, mPrefix, mOp, 1)
|
|
|
|
v = awq_llama['model.norm.weight']
|
|
if mapping.is_last_pp_rank():
|
|
tensorrt_llm_llama.ln_f.weight.value = v.to(torch_dtype).cpu().numpy()
|
|
|
|
#lm_head
|
|
if pad_vocab:
|
|
weight = awq_llama['lm_head.weight']
|
|
[vocab_size, k] = weight.shape
|
|
new_weight = torch.zeros([pad_vocab_size, k])
|
|
new_weight[:vocab_size, :] = weight
|
|
new_weight = new_weight.T.contiguous()
|
|
amax = awq_llama['lm_head.weight_quantizer._amax'].reshape(
|
|
[vocab_size, k // group_size])
|
|
new_amax = torch.ones([pad_vocab_size, k // group_size])
|
|
new_amax[:vocab_size, :] = amax
|
|
new_amax = new_amax.T.contiguous()
|
|
new_scale = new_amax / 8
|
|
tensorrt_llm_llama.lm_head.qweight.value = AWQ_quantize_pack_preprocess(
|
|
new_weight, new_scale)
|
|
tensorrt_llm_llama.lm_head.scale.value = new_scale.to(
|
|
torch_dtype).cpu().numpy()
|
|
tensorrt_llm_llama.lm_head.pre_quant_scale.value = awq_llama[
|
|
'lm_head.input_quantizer._pre_quant_scale'].to(
|
|
torch_dtype).cpu().numpy()
|
|
else:
|
|
mPrefix = "lm_head"
|
|
mOp = tensorrt_llm_llama.lm_head
|
|
if mapping.is_last_pp_rank():
|
|
process_and_assign_weight(awq_llama, mPrefix, mOp, 1)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|