TensorRT-LLMs/cpp/tests/resources/scripts/generate_expected_chatglm6b_output.py
2023-10-15 21:26:20 +08:00

190 lines
6.9 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import pathlib as _pl
import re
import sys
import numpy as np
import torch
import transformers
import tensorrt_llm
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
resources_dir = _pl.Path(
__file__).parent.parent.parent.parent.parent / "examples/chatglm6b"
sys.path.insert(0, str(resources_dir))
from build import get_engine_name
END_ID = 130005
PAD_ID = 3
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_output_len', type=int, default=1024)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--engine_dir',
type=str,
default=str(resources_dir) + '/trtModel')
parser.add_argument('--beam_width', type=int, default=1)
parser.add_argument(
'--input_text',
type=str,
nargs='*',
default=["Hello!", "Could you introduce NVIDIA Corporation for me?"])
parser.add_argument(
'--input_tokens',
type=str,
help='CSV file containing tokenized input. Alternative to text input.',
default=None)
parser.add_argument('--tokenizer_dir',
type=str,
default=str(resources_dir) + '/pyTorchModel',
help='Directory containing the tokenizer model.')
return parser.parse_args()
def process_response(responseList):
for i, response in enumerate(responseList):
response = response.strip()
punkts = [
[",", ""],
["!", ""],
[":", ""],
[";", ""],
["\?", ""],
]
for item in punkts:
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0],
r"\1%s" % item[1], response)
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0],
r"%s\1" % item[1], response)
responseList[i] = response
return responseList
def generate(batch_size, beam_width):
print("generate expected chatglm6b output BatchSize=%d, BeamWidth=%d" %
(batch_size, beam_width))
args = parse_arguments()
if batch_size == 1:
args.input_text = args.input_text[:1]
elif batch_size > 2:
args.input_text += args.input_text[0] * (batch_size - 2)
args.beam_width = beam_width
tensorrt_llm.logger.set_level(args.log_level)
config_path = os.path.join(args.engine_dir, 'config.json')
with open(config_path, 'r') as f:
config = json.load(f)
use_gpt_attention_plugin = config['plugin_config']['gpt_attention_plugin']
dtype = config['builder_config']['precision']
world_size = config['builder_config']['tensor_parallel']
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
num_heads = config['builder_config']['num_heads'] // world_size
hidden_size = config['builder_config']['hidden_size'] // world_size
vocab_size = config['builder_config']['vocab_size']
num_layers = config['builder_config']['num_layers']
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size,
runtime_rank,
tp_size=world_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_name = get_engine_name('chatglm6b', dtype, world_size, runtime_rank)
serialize_path = os.path.join(args.engine_dir, engine_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.tokenizer_dir, trust_remote_code=True)
input_text = args.input_text
tokenized = tokenizer(input_text,
return_tensors="pt",
padding=True,
return_length=True)
input_ids = tokenized['input_ids'].int().contiguous().cuda()
input_lengths = tokenized['length'].int().contiguous().cuda()
input_ids_padding_right = torch.zeros_like(input_ids) + END_ID
for i, sample in enumerate(input_ids):
nPadding = 0
for token in sample:
if token == PAD_ID:
nPadding += 1
else:
break
input_ids_padding_right[i, :len(sample[nPadding:])] = sample[nPadding:]
input_ids = input_ids_padding_right
model_config = ModelConfig(model_name="chatglm6b",
num_heads=num_heads,
num_kv_heads=num_heads,
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
gpt_attention_plugin=use_gpt_attention_plugin)
sampling_config = SamplingConfig(
end_id=END_ID,
pad_id=PAD_ID,
top_k=1,
top_p=1.0,
num_beams=args.beam_width,
)
sampling_config.random_seed = 1
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
decoder = tensorrt_llm.runtime.ChatGLM6BHeadModelGenerationSession(
model_config, engine_buffer, runtime_mapping)
decoder.setup(input_ids.size(0), input_ids.size(1), args.max_output_len,
args.beam_width)
output_ids = decoder.decode(input_ids, input_lengths, sampling_config)
torch.cuda.synchronize()
data_path = _pl.Path(__file__).parent.parent / "data/chatglm6b"
if not os.path.exists(str(data_path)):
os.mkdir(data_path)
nBS, nBM = input_ids.size(0), args.beam_width
np.save(
str(data_path) + "/inputId-BS%d-BM%d.npy" % (nBS, nBM),
input_ids.detach().cpu().numpy())
outputId = output_ids.detach().cpu().numpy()
nMaxOutputLength = 0
for single_output in outputId.reshape(nBS * nBM, -1):
nMaxOutputLength = max(nMaxOutputLength,
np.min(np.where(single_output == END_ID)))
np.save(
str(data_path) + "/outputId-BS%d-BM%d.npy" % (nBS, nBM),
outputId[:, :, :(nMaxOutputLength + 1)])
if __name__ == '__main__':
generate(batch_size=1, beam_width=1)
generate(batch_size=2, beam_width=1)
generate(batch_size=1, beam_width=2)
print("Finished!")