TensorRT-LLMs/examples/baichuan/run.py
2023-10-10 23:22:17 -07:00

237 lines
9.6 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import csv
import json
import os
from pathlib import Path
import numpy as np
import torch
from transformers import AutoTokenizer
import tensorrt_llm
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
from build import get_engine_name # isort:skip
EOS_TOKEN = 2
PAD_TOKEN = 0
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_output_len', type=int, required=True)
parser.add_argument('--log_level', type=str, default='error')
parser.add_argument('--model_version',
type=str,
default='v1_13b',
choices=['v1_7b', 'v1_13b', 'v2_7b', 'v2_13b'])
parser.add_argument('--engine_dir', type=str, default='baichuan_outputs')
parser.add_argument('--tokenizer_dir',
type=str,
default="baichuan-inc/Baichuan-13B-Chat",
help="Directory containing the tokenizer.model.")
parser.add_argument('--input_text', type=str, default='世界上第二高的山峰是哪座?')
parser.add_argument(
'--input_tokens',
dest='input_file',
type=str,
help=
'CSV or Numpy file containing tokenized input. Alternative to text input.',
default=None)
parser.add_argument('--output_csv',
type=str,
help='CSV file where the tokenized output is stored.',
default=None)
parser.add_argument('--output_npy',
type=str,
help='Numpy file where the tokenized output is stored.',
default=None)
parser.add_argument('--num_beams',
type=int,
help="Use beam search if num_beams >1",
default=1)
return parser.parse_args()
def generate(
max_output_len: int,
log_level: str = 'error',
model_version: str = 'v1_13b',
engine_dir: str = 'baichuan_outputs',
input_text: str = '世界上第二高的山峰是哪座?',
input_file: str = None,
output_csv: str = None,
output_npy: str = None,
tokenizer_dir: str = None,
num_beams: int = 1,
):
tensorrt_llm.logger.set_level(log_level)
config_path = os.path.join(engine_dir, 'config.json')
with open(config_path, 'r') as f:
config = json.load(f)
use_gpt_attention_plugin = config['plugin_config']['gpt_attention_plugin']
remove_input_padding = config['plugin_config']['remove_input_padding']
paged_kv_cache = config['plugin_config']['paged_kv_cache']
tokens_per_block = config['plugin_config']['tokens_per_block']
dtype = config['builder_config']['precision']
world_size = config['builder_config']['tensor_parallel']
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
num_heads = config['builder_config']['num_heads'] // world_size
hidden_size = config['builder_config']['hidden_size'] // world_size
vocab_size = config['builder_config']['vocab_size']
num_layers = config['builder_config']['num_layers']
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size,
runtime_rank,
tp_size=world_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir,
use_fast=False,
trust_remote_code=True)
model_config = ModelConfig(num_heads=num_heads,
num_kv_heads=num_heads,
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
gpt_attention_plugin=use_gpt_attention_plugin,
paged_kv_cache=paged_kv_cache,
tokens_per_block=tokens_per_block,
remove_input_padding=remove_input_padding,
dtype=dtype)
repetition_penalty = 1.1
temperature = 0.3
top_k = 5
top_p = 0.85
if args.model_version == 'v1_7b':
temperature = 1
top_k = 1
top_p = 0
elif args.model_version == 'v2_7b' or args.model_version == 'v2_13b':
repetition_penalty = 1.05
sampling_config = SamplingConfig(end_id=EOS_TOKEN,
pad_id=PAD_TOKEN,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
temperature=temperature,
top_k=top_k,
top_p=top_p)
engine_name = get_engine_name('baichuan', dtype, world_size, runtime_rank)
serialize_path = os.path.join(engine_dir, engine_name)
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
decoder = tensorrt_llm.runtime.GenerationSession(model_config,
engine_buffer,
runtime_mapping)
input_tokens = []
if input_file is None:
input_tokens.append(
tokenizer.encode(input_text, add_special_tokens=False))
else:
if input_file.endswith('.csv'):
with open(input_file, 'r') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for line in csv_reader:
input_tokens.append(np.array(line, dtype='int32'))
elif input_file.endswith('.npy'):
inputs = np.load(input_file)
for row in inputs:
row = row[row != EOS_TOKEN]
input_tokens.append(row)
else:
print('Input file format not supported.')
raise SystemExit
input_ids = None
input_lengths = None
if input_file is None:
input_ids = torch.tensor(input_tokens, dtype=torch.int32, device='cuda')
input_lengths = torch.tensor([input_ids.size(1)],
dtype=torch.int32,
device='cuda')
else:
input_lengths = torch.tensor([len(x) for x in input_tokens],
dtype=torch.int32,
device='cuda')
if remove_input_padding:
input_ids = np.concatenate(input_tokens)
input_ids = torch.tensor(input_ids,
dtype=torch.int32,
device='cuda').unsqueeze(0)
else:
input_ids = torch.nested.to_padded_tensor(
torch.nested.nested_tensor(input_tokens, dtype=torch.int32),
EOS_TOKEN).cuda()
max_input_length = torch.max(input_lengths).item()
decoder.setup(input_lengths.size(0),
max_input_length,
max_output_len,
beam_width=num_beams)
output_ids = decoder.decode(input_ids, input_lengths, sampling_config)
torch.cuda.synchronize()
if runtime_rank == 0:
if output_csv is None and output_npy is None:
for b in range(input_lengths.size(0)):
inputs = input_tokens[b]
input_text = tokenizer.decode(inputs)
print(f'Input: \"{input_text}\"')
if num_beams <= 1:
output_begin = max_input_length
outputs = output_ids[b][0][output_begin:].tolist()
output_text = tokenizer.decode(outputs)
print(f'Output: \"{output_text}\"')
else:
for beam in range(num_beams):
output_begin = input_lengths[b]
output_end = input_lengths[b] + max_output_len
outputs = output_ids[b][beam][
output_begin:output_end].tolist()
output_text = tokenizer.decode(outputs)
print(f'Output: \"{output_text}\"')
output_ids = output_ids.reshape((-1, output_ids.size(2)))
if output_csv is not None:
output_file = Path(output_csv)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = output_ids.tolist()
with open(output_file, 'w') as csv_file:
writer = csv.writer(csv_file, delimiter=',')
writer.writerows(outputs)
if output_npy is not None:
output_file = Path(output_npy)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = np.array(output_ids.cpu().contiguous(), dtype='int32')
np.save(output_file, outputs)
return
if __name__ == '__main__':
args = parse_arguments()
generate(**vars(args))