TensorRT-LLMs/examples/chatglm6b/weight.py
2023-09-20 00:29:41 -07:00

455 lines
20 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import configparser
import time
from pathlib import Path
import numpy as np
import torch
import tensorrt_llm
from tensorrt_llm.functional import is_gated_activation
from tensorrt_llm.models import ChatGLM6BHeadModel
from tensorrt_llm.quantization import QuantMode
def gen_suffix(rank, use_smooth_quant, quant_per_channel):
suffix = f"{rank}.bin"
if use_smooth_quant:
sq_prefix = "int8."
if quant_per_channel:
sq_prefix += "col."
suffix = sq_prefix + suffix
return suffix
def extract_layer_idx(name):
ss = name.split('.')
for s in ss:
if s.isdigit():
return s
return None
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return np.ascontiguousarray(np.split(v, tp_size)[idx])
elif len(v.shape) == 2:
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx])
return None
def parse_ft_config(ini_file):
chatglm6b_config = configparser.ConfigParser()
chatglm6b_config.read(ini_file)
n_embd = chatglm6b_config.getint('chatglm6b', 'hidden_size')
n_head = chatglm6b_config.getint('chatglm6b', 'num_attention_heads')
n_layer = chatglm6b_config.getint('chatglm6b', 'num_layers')
n_positions = chatglm6b_config.getint('chatglm6b', 'max_sequence_length')
vocab_size = chatglm6b_config.getint('chatglm6b', 'vocab_size')
do_layer_norm_before = chatglm6b_config.getboolean('chatglm6b',
'do_layer_norm_before',
fallback=True)
rotary_pct = chatglm6b_config.getfloat('chatglm6b',
'rotary_pct',
fallback=0.0)
hidden_act = 'gelu' #chatglm6b_config.get('chatglm6b', 'activation_function')
bias = chatglm6b_config.getboolean('chatglm6b', 'bias', fallback=True)
inter_size = chatglm6b_config.getint('chatglm6b',
'intermediate_size',
fallback=None)
if inter_size is None:
inter_size = 4 * n_embd
multi_query_mode = chatglm6b_config.getboolean('chatglm6b',
'multi_query_mode',
fallback=False)
return n_embd, n_head, n_layer, n_positions, vocab_size, do_layer_norm_before, hidden_act, rotary_pct, bias, inter_size, multi_query_mode
def load_from_ft(chatglm6bModel: ChatGLM6BHeadModel,
dir_path,
rank=0,
tensor_parallel=1,
fp16=False):
tensorrt_llm.logger.info('Loading weights from FT...')
tik = time.time()
quant_mode = getattr(chatglm6bModel, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
n_embd, n_head, n_layer, n_positions, vocab_size, do_layer_norm_before, hidden_act, rotary_pct, bias, inter_size, multi_query_mode = parse_ft_config(
Path(dir_path) / 'config.ini')
np_dtype = np.float16 if fp16 else np.float32
def fromfile(dir_path, name, shape=None, dtype=None):
dtype = np_dtype if dtype is None else dtype
p = dir_path + '/' + name
if Path(p).exists():
t = np.fromfile(p, dtype=dtype)
if shape is not None:
t = t.reshape(shape)
return t
return None
def set_smoothquant_scale_factors(module,
pre_scale_weight,
dir_path,
basename,
shape,
per_tok_dyn,
per_channel,
is_qkv=False,
rank=None):
suffix = "bin"
if per_channel:
if rank is not None:
suffix = f"{rank}." + suffix
suffix = "col." + suffix
col_shape = shape if (per_channel or is_qkv) else [1, 1]
if per_tok_dyn:
if pre_scale_weight is not None:
pre_scale_weight.value = np.array([1.0], dtype=np.float32)
t = fromfile(dir_path, f"{basename}scale_w_quant_orig.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
else:
t = fromfile(dir_path, f"{basename}scale_x_orig_quant.bin", [1],
np.float32)
pre_scale_weight.value = t
t = fromfile(dir_path, f"{basename}scale_y_accum_quant.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
t = fromfile(dir_path, f"{basename}scale_y_quant_orig.bin", [1, 1],
np.float32)
module.act_scale.value = t
# Determine the quantization mode.
quant_mode = getattr(chatglm6bModel, "quant_mode", QuantMode(0))
# Do we use SmoothQuant?
use_smooth_quant = quant_mode.has_act_and_weight_quant()
# Do we use quantization per token?
quant_per_token_dyn = quant_mode.has_per_token_dynamic_scaling()
# Do we use quantization per channel?
quant_per_channel = quant_mode.has_per_channel_scaling()
# Do we use INT4/INT8 weight-only?
use_weight_only = quant_mode.is_weight_only()
# Int8 KV cache
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
def sq_trick(x):
return x.view(np.float32) if use_smooth_quant else x
# Debug
suffix = gen_suffix(rank, use_smooth_quant, quant_per_channel)
# The type of weights.
w_type = np_dtype if not use_smooth_quant else np.int8
# add weight of LM and position embedding
chatglm6bModel.embedding.weight.value = (fromfile(
dir_path, 'model.word_embeddings.weight.bin', [vocab_size, n_embd]))
chatglm6bModel.position_embedding_cos.weight.value = (fromfile(
dir_path, 'model.cosTable.weight.bin',
[n_positions, n_embd // n_head // 2]))
chatglm6bModel.position_embedding_sin.weight.value = (fromfile(
dir_path, 'model.sinTable.weight.bin',
[n_positions, n_embd // n_head // 2]))
if do_layer_norm_before:
chatglm6bModel.ln_f.bias.value = (fromfile(
dir_path, 'model.final_layernorm.bias.bin'))
chatglm6bModel.ln_f.weight.value = (fromfile(
dir_path, 'model.final_layernorm.weight.bin'))
# share input embedding
lm_head_weight = fromfile(dir_path, 'model.lm.weight.bin',
[vocab_size, n_embd])
if lm_head_weight is None:
lm_head_weight = fromfile(dir_path, 'model.wte.bin',
[vocab_size, n_embd])
if vocab_size % tensor_parallel != 0:
# padding
vocab_size_padded = chatglm6bModel.lm_head.out_features * tensor_parallel
pad_width = vocab_size_padded - vocab_size
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
'constant',
constant_values=0)
chatglm6bModel.lm_head.weight.value = np.ascontiguousarray(
split(lm_head_weight, tensor_parallel, rank))
for i in range(n_layer):
chatglm6bModel.layers[i].input_layernorm.weight.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.weight.bin'))
chatglm6bModel.layers[i].input_layernorm.bias.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.bias.bin'))
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.weight.' + suffix,
[3 * n_embd // tensor_parallel, n_embd], w_type)
if t is not None:
dst = chatglm6bModel.layers[i].attention.qkv.weight
if use_smooth_quant:
dst.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
set_smoothquant_scale_factors(
chatglm6bModel.layers[i].attention.qkv,
chatglm6bModel.layers[i].input_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.attention.query_key_value.',
[1, 3 * n_embd // tensor_parallel],
quant_per_token_dyn,
quant_per_channel,
rank=rank,
is_qkv=True)
elif use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = chatglm6bModel.layers[
i].attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(t)
if bias:
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.bias.' + str(rank) + '.bin')
if t is not None:
dst = chatglm6bModel.layers[i].attention.qkv.bias
dst.value = np.ascontiguousarray(t)
dst = chatglm6bModel.layers[i].attention.dense.weight
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.attention.dense.weight.' + suffix,
[n_embd, n_embd // tensor_parallel], w_type)
if use_smooth_quant:
dst.value = sq_trick(np.ascontiguousarray(np.transpose(t, [1, 0])))
dense_scale = getattr(chatglm6bModel.layers[i].attention,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
chatglm6bModel.layers[i].attention.dense, dense_scale, dir_path,
'model.layers.' + str(i) + '.attention.dense.', [1, n_embd],
quant_per_token_dyn, quant_per_channel)
elif use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = chatglm6bModel.layers[i].attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(t)
if bias:
dst = chatglm6bModel.layers[i].attention.dense.bias
dst.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.attention.dense.bias.bin')
dst = chatglm6bModel.layers[i].post_layernorm.weight
dst.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.post_attention_layernorm.weight.bin')
dst = chatglm6bModel.layers[i].post_layernorm.bias
dst.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.post_attention_layernorm.bias.bin')
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_h_to_4h.weight.' + suffix,
[inter_size // tensor_parallel, n_embd], w_type)
if use_smooth_quant:
chatglm6bModel.layers[i].mlp.fc.weight.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
set_smoothquant_scale_factors(
chatglm6bModel.layers[i].mlp.fc,
chatglm6bModel.layers[i].post_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.mlp.dense_h_to_4h.',
[1, inter_size // tensor_parallel],
quant_per_token_dyn,
quant_per_channel,
rank=rank)
elif use_weight_only:
dst = chatglm6bModel.layers[i].mlp.fc.weight
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = chatglm6bModel.layers[i].mlp.fc.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
chatglm6bModel.layers[i].mlp.fc.weight.value = np.ascontiguousarray(
t)
if bias:
chatglm6bModel.layers[i].mlp.fc.bias.value = fromfile(
dir_path, 'model.layers.' + str(i) +
'.mlp.dense_h_to_4h.bias.' + str(rank) + '.bin')
if is_gated_activation(hidden_act):
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.mlp.dense_h_to_4h.gate.weight.' + suffix,
[inter_size // tensor_parallel, n_embd], w_type)
chatglm6bModel.layers[
i].mlp.gate.weight.value = np.ascontiguousarray(t)
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.weight.' + suffix,
[n_embd, inter_size // tensor_parallel], w_type)
if use_smooth_quant:
chatglm6bModel.layers[i].mlp.proj.weight.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
proj_scale = getattr(chatglm6bModel.layers[i].mlp,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
chatglm6bModel.layers[i].mlp.proj, proj_scale, dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.', [1, n_embd],
quant_per_token_dyn, quant_per_channel)
elif use_weight_only:
dst = chatglm6bModel.layers[i].mlp.proj.weight
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = chatglm6bModel.layers[i].mlp.proj.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
chatglm6bModel.layers[
i].mlp.proj.weight.value = np.ascontiguousarray(t)
if bias:
chatglm6bModel.layers[i].mlp.proj.bias.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.bias.bin')
if use_int8_kv_cache:
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
np.float32)
chatglm6bModel.layers[
i].attention.kv_orig_quant_scale.value = 1.0 / t
chatglm6bModel.layers[i].attention.kv_quant_orig_scale.value = t
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
def load_from_hf_chatglm6b(chatglm6bModel: ChatGLM6BHeadModel,
hf_chatglm6b,
rank=0,
tensor_parallel=1,
fp16=False):
tensorrt_llm.logger.info('Loading weights from HF GPT...')
tik = time.time()
valid_lm_head_weight = False
for k, v in hf_chatglm6b.state_dict().items():
torch_dtype = torch.float16 if fp16 else torch.float32
v = v.to(torch_dtype).cpu().numpy()
if 'wte.weight' in k:
chatglm6bModel.embedding.vocab_embedding.weight.value = v
elif 'wpe.weight' in k:
chatglm6bModel.embedding.position_embedding.weight.value = v
elif 'ln_f.weight' in k:
chatglm6bModel.ln_f.weight.value = v
elif 'ln_f.bias' in k:
chatglm6bModel.ln_f.bias.value = v
elif 'lm_head.weight' in k:
chatglm6bModel.lm_head.weight.value = np.ascontiguousarray(
split(v, tensor_parallel, rank))
valid_lm_head_weight = True
else:
layer_idx = extract_layer_idx(k)
if layer_idx is None:
continue
idx = int(layer_idx)
if 'ln_1.weight' in k:
chatglm6bModel.layers[idx].input_layernorm.weight.value = v
elif 'ln_1.bias' in k:
chatglm6bModel.layers[idx].input_layernorm.bias.value = v
elif 'attn.c_attn.weight' in k:
# HF-GPT uses Conv1D instead of Linear
v = v.transpose()
dst = chatglm6bModel.layers[idx].attention.qkv.weight
dst.value = np.ascontiguousarray(split(v, tensor_parallel,
rank))
elif 'attn.c_attn.bias' in k:
dst = chatglm6bModel.layers[idx].attention.qkv.bias
dst.value = np.ascontiguousarray(split(v, tensor_parallel,
rank))
elif 'attn.c_proj.weight' in k:
v = v.transpose()
dst = chatglm6bModel.layers[idx].attention.dense.weight
dst.value = np.ascontiguousarray(
split(v, tensor_parallel, rank, dim=1))
elif 'attn.c_proj.bias' in k:
dst = chatglm6bModel.layers[idx].attention.dense.bias
dst.value = v
elif 'ln_2.weight' in k:
dst = chatglm6bModel.layers[idx].post_layernorm.weight
dst.value = v
elif 'ln_2.bias' in k:
dst = chatglm6bModel.layers[idx].post_layernorm.bias
dst.value = v
elif 'mlp.c_fc.weight' in k:
v = v.transpose()
chatglm6bModel.layers[
idx].mlp.fc.weight.value = np.ascontiguousarray(
split(v, tensor_parallel, rank))
elif 'mlp.c_fc.bias' in k:
chatglm6bModel.layers[
idx].mlp.fc.bias.value = np.ascontiguousarray(
split(v, tensor_parallel, rank))
elif 'mlp.c_proj.weight' in k:
v = v.transpose()
chatglm6bModel.layers[
idx].mlp.proj.weight.value = np.ascontiguousarray(
split(v, tensor_parallel, rank, dim=1))
elif 'mlp.c_proj.bias' in k:
chatglm6bModel.layers[idx].mlp.proj.bias.value = v
if not valid_lm_head_weight:
# Use wte as lm_head weight to match the load_from_ft implementation.
lm_head_weight = chatglm6bModel.embedding.vocab_embedding.weight._value
vocab_size = hf_chatglm6b.config.vocab_size
if vocab_size % tensor_parallel != 0:
# padding
vocab_size_padded = chatglm6bModel.lm_head.out_features * tensor_parallel
pad_width = vocab_size_padded - vocab_size
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
'constant',
constant_values=0)
chatglm6bModel.lm_head.weight.value = np.ascontiguousarray(
split(lm_head_weight, tensor_parallel, rank))
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')