TensorRT-LLMs/examples/gpt/hf_gpt_convert.py
2023-09-28 09:00:05 -07:00

301 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Convert huggingface GPT model. Use https://huggingface.co/gpt2 as demo.
'''
import argparse
import configparser
import dataclasses
import os
import platform
from pathlib import Path
import torch
import torch.multiprocessing as multiprocessing
from smoothquant import capture_activation_range, smooth_gemm
from tqdm import tqdm
from transformers import AutoModelForCausalLM # transformers-4.10.0-py3
from transformers import AutoTokenizer
from transformers.models.gpt2.modeling_gpt2 import GPT2Block
from utils.convert import split_and_save_weight
from tensorrt_llm._utils import str_dtype_to_torch, torch_to_numpy
@dataclasses.dataclass(frozen=True)
class ProgArgs:
out_dir: str
in_file: str
tensor_parallelism: int = 1
processes: int = 4
calibrate_kv_cache: bool = False
smoothquant: float = None
model: str = "gpt"
storage_type: str = "fp32"
dataset_cache_dir: str = None
load_model_on_cpu: bool = False
convert_model_on_cpu: bool = False
@staticmethod
def parse(args=None) -> 'ProgArgs':
parser = argparse.ArgumentParser(
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--out-dir',
'-o',
type=str,
help='file name of output directory',
required=True)
parser.add_argument('--in-file',
'-i',
type=str,
help='file name of input checkpoint file',
required=True)
parser.add_argument('--tensor-parallelism',
'-tp',
type=int,
help='Requested tensor parallelism for inference',
default=1)
parser.add_argument(
"--processes",
"-p",
type=int,
help=
"How many processes to spawn for conversion (default: 4). Set it to a lower value to reduce RAM usage.",
default=4)
parser.add_argument(
"--calibrate-kv-cache",
"-kv",
action="store_true",
help=
"Generate scaling factors for KV cache. Used for storing KV cache in int8."
)
parser.add_argument(
"--smoothquant",
"-sq",
type=float,
default=None,
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
" to Smoothquant the model, and output int8 weights."
" A good first try is 0.5. Must be in [0, 1]")
parser.add_argument(
"--model",
default="gpt2",
type=str,
help="Specify GPT variants to convert checkpoints correctly",
choices=["gpt2", "santacoder", "starcoder"])
parser.add_argument("--storage-type",
"-t",
type=str,
default="float32",
choices=["float32", "float16", "bfloat16"])
parser.add_argument("--dataset-cache-dir",
type=str,
default=None,
help="cache dir to load the hugging face dataset")
parser.add_argument("--load-model-on-cpu", action="store_true")
parser.add_argument("--convert-model-on-cpu", action="store_true")
return ProgArgs(**vars(parser.parse_args(args)))
@torch.no_grad()
def smooth_gpt_model(model, scales, alpha):
# Smooth the activation and weights with smoother = $\diag{s}$
for name, module in model.named_modules():
if not isinstance(module, GPT2Block):
continue
# qkv_proj
layer_name = name + ".attn.c_attn"
smoother = smooth_gemm(module.attn.c_attn.weight.T,
scales[layer_name]["x"], module.ln_1.weight,
module.ln_1.bias, alpha)
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.attn.c_attn.weight.abs().max(dim=0)[0]
# fc1
layer_name = name + ".mlp.c_fc"
smoother = smooth_gemm(module.mlp.c_fc.weight.T,
scales[layer_name]["x"], module.ln_2.weight,
module.ln_2.bias, alpha)
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.mlp.c_fc.weight.abs().max(dim=0)[0]
# SantaCoder separates Q projection from KV projection
def concat_qkv_weight_bias(q, hf_key, hf_model):
kv = hf_model.state_dict()[hf_key.replace("q_attn", "kv_attn")]
return torch.cat([q, kv], dim=-1)
# StarCoder uses nn.Linear for these following ops whose weight matrix is transposed compared to transformer.Conv1D
def transpose_weights(hf_name, param):
weight_to_transpose = ["c_attn", "c_proj", "c_fc"]
if any([k in hf_name for k in weight_to_transpose]):
if len(param.shape) == 2:
param = param.transpose(0, 1)
return param
def gpt_to_ft_name(orig_name):
global_weights = {
"transformer.wpe.weight": "model.wpe",
"transformer.wte.weight": "model.wte",
"transformer.ln_f.bias": "model.final_layernorm.bias",
"transformer.ln_f.weight": "model.final_layernorm.weight",
"lm_head.weight": "model.lm_head.weight"
}
if orig_name in global_weights:
return global_weights[orig_name]
_, _, layer_id, *weight_name = orig_name.split(".")
layer_id = int(layer_id)
weight_name = "transformer." + ".".join(weight_name)
per_layer_weights = {
"transformer.ln_1.bias": "input_layernorm.bias",
"transformer.ln_1.weight": "input_layernorm.weight",
"transformer.attn.c_attn.bias": "attention.query_key_value.bias",
"transformer.attn.c_attn.weight": "attention.query_key_value.weight",
"transformer.attn.q_attn.weight": "attention.query.weight",
"transformer.attn.q_attn.bias": "attention.query.bias",
"transformer.attn.kv_attn.weight": "attention.key_value.weight",
"transformer.attn.kv_attn.bias": "attention.key_value.bias",
"transformer.attn.c_proj.bias": "attention.dense.bias",
"transformer.attn.c_proj.weight": "attention.dense.weight",
"transformer.ln_2.bias": "post_attention_layernorm.bias",
"transformer.ln_2.weight": "post_attention_layernorm.weight",
"transformer.mlp.c_fc.bias": "mlp.dense_h_to_4h.bias",
"transformer.mlp.c_fc.weight": "mlp.dense_h_to_4h.weight",
"transformer.mlp.c_proj.bias": "mlp.dense_4h_to_h.bias",
"transformer.mlp.c_proj.weight": "mlp.dense_4h_to_h.weight",
}
return f"layers.{layer_id}.{per_layer_weights[weight_name]}"
@torch.no_grad()
def hf_gpt_converter(args: ProgArgs):
infer_tp = args.tensor_parallelism
multi_query_mode = True if args.model in ["santacoder", "starcoder"
] else False
saved_dir = Path(args.out_dir) / f"{infer_tp}-gpu"
saved_dir.mkdir(parents=True, exist_ok=True)
# load position_embedding from rank 0
model = AutoModelForCausalLM.from_pretrained(args.in_file,
device_map="auto",
trust_remote_code=True)
if args.load_model_on_cpu:
model = model.cpu()
torch.cuda.empty_cache()
act_range = {}
if args.smoothquant is not None or args.calibrate_kv_cache:
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
"TOKENIZERS_PARALLELISM", "false")
from datasets import load_dataset
dataset = load_dataset("lambada",
split="validation",
cache_dir=args.dataset_cache_dir)
act_range = capture_activation_range(
model, AutoTokenizer.from_pretrained(args.in_file), dataset)
if args.smoothquant is not None:
smooth_gpt_model(model, act_range, args.smoothquant)
config = configparser.ConfigParser()
config["gpt"] = {}
for key in vars(args):
config["gpt"][key] = f"{vars(args)[key]}"
for k, v in vars(model.config).items():
config["gpt"][k] = f"{v}"
config["gpt"]["storage_dtype"] = args.storage_type
config["gpt"]["multi_query_mode"] = str(multi_query_mode)
with open(saved_dir / "config.ini", 'w') as configfile:
config.write(configfile)
storage_type = str_dtype_to_torch(args.storage_type)
global_ft_weights = [
"model.wpe", "model.wte", "model.final_layernorm.bias",
"model.final_layernorm.weight", "model.lm_head.weight"
]
int8_outputs = None
if args.calibrate_kv_cache:
int8_outputs = "kv_cache_only"
if args.smoothquant is not None:
int8_outputs = "all"
starmap_args = []
for name, param in model.named_parameters():
if "weight" not in name and "bias" not in name:
continue
ft_name = gpt_to_ft_name(name)
if args.convert_model_on_cpu:
param = param.cpu()
if args.model == "starcoder":
param = transpose_weights(name, param)
if ft_name in global_ft_weights:
torch_to_numpy(param.to(storage_type).cpu()).tofile(
saved_dir / f"{ft_name}.bin")
else:
if 'q_attn' in name:
param = concat_qkv_weight_bias(param, name, model)
ft_name = ft_name.replace("query", "query_key_value")
# Needed by QKV projection weight split. With multi_query_mode one does not simply take
# out_dim and divide it by 3 to get local_dim becuase out_dim = local_dim + 2 * head_size
local_dim = model.transformer.h[
0].attn.embed_dim if multi_query_mode else None
if args.processes == 1:
split_and_save_weight(
0, saved_dir, infer_tp, ft_name, param.to(storage_type),
storage_type, act_range.get(name.replace(".weight", "")), {
"int8_outputs": int8_outputs,
"multi_query_mode": multi_query_mode,
"local_dim": local_dim
})
else:
starmap_args.append(
(0, saved_dir, infer_tp, ft_name, param.to(storage_type),
storage_type, act_range.get(name.replace(".weight", "")), {
"int8_outputs": int8_outputs,
"multi_query_mode": multi_query_mode,
"local_dim": local_dim
}))
starmap_args = tqdm(starmap_args, desc="saving weights")
if args.processes > 1:
with multiprocessing.Pool(args.processes) as pool:
pool.starmap(split_and_save_weight, starmap_args)
def run_conversion(args: ProgArgs):
if args.processes > 1 and platform.system() == "Windows":
print(
"Resetting processes to 1 because multi-process on Windows is not implemented."
)
args = dataclasses.replace(args, processes=1)
print("\n=============== Arguments ===============")
for key, value in vars(args).items():
print(f"{key}: {value}")
print("========================================")
hf_gpt_converter(args)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
run_conversion(ProgArgs.parse())