TensorRT-LLMs/examples/gptneox/build.py
2023-10-15 21:26:20 +08:00

415 lines
17 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import time
import tensorrt as trt
import torch
import torch.multiprocessing as mp
from safetensors import safe_open
from transformers import AutoModelForCausalLM, GPTNeoXConfig
from weight import load_from_hf_gpt_neox
import tensorrt_llm
from tensorrt_llm.builder import Builder
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import (weight_only_groupwise_quantize,
weight_only_quantize)
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
MODEL_NAME = "gptneox"
hf_gpt = None
class StateDict():
def __init__(self, quant_ckpt_dir):
self.model_state_dict = safe_open(quant_ckpt_dir,
framework="pt",
device=0)
def get(self, k):
return self.model_state_dict.get_tensor(k).cpu()
class GPTQModel():
def __init__(self, model_dir, quant_ckpt_dir):
with open(model_dir + '/config.json', 'r') as f:
model_config = json.load(f)
self.config = GPTNeoXConfig()
self.config.vocab_size = model_config['vocab_size']
self.config.hidden_size = model_config['hidden_size']
self.config.num_hidden_layers = model_config['num_hidden_layers']
self.config.num_attention_heads = model_config[
'num_attention_heads']
self.config.intermediate_size = model_config['intermediate_size']
self.config.hidden_act = model_config['hidden_act']
self.config.rotary_pct = model_config['rotary_pct']
self.config.rotary_emb_base = model_config['rotary_emb_base']
self.config.max_position_embeddings = model_config[
'max_position_embeddings']
self.config.initializer_range = model_config['initializer_range']
self.config.layer_norm_eps = model_config['layer_norm_eps']
self.config.use_cache = model_config['use_cache']
self.config.bos_token_id = model_config['bos_token_id']
self.config.eos_token_id = model_config['eos_token_id']
self.config.tie_word_embeddings = model_config[
'tie_word_embeddings']
self.model_state_dict = StateDict(quant_ckpt_dir)
def state_dict(self):
return self.model_state_dict
def get_engine_name(model, dtype, tp_size, rank):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(bytearray(engine))
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
parser.add_argument(
'--model_dir',
type=str,
default=None,
help='The path to HF GPT-NeoX model / checkpoints to read weights from')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float16', 'float32'])
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--vocab_size', type=int, default=50432)
parser.add_argument('--n_layer', type=int, default=44)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_embd', type=int, default=6144)
parser.add_argument('--n_head', type=int, default=64)
parser.add_argument('--hidden_act', type=str, default='gelu')
parser.add_argument(
'--rotary_pct',
type=float,
default=0.25,
help="Percentage of hidden dimensions to allocate to rotary embeddings."
)
parser.add_argument('--max_batch_size', type=int, default=64)
parser.add_argument('--max_input_len', type=int, default=1024)
parser.add_argument('--max_output_len', type=int, default=1024)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument('--use_gpt_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--use_weight_only_quant_matmul_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16'])
parser.add_argument('--use_weight_only_groupwise_quant_matmul_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16'])
parser.add_argument(
'--groupwise_quant_safetensors_path',
type=str,
default=None,
help=
"The path to groupwise quantized GPT-NeoX model / checkpoints to read weights from."
)
parser.add_argument('--use_layernorm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument(
'--output_dir',
type=str,
default='gpt_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=1, # Meta does TP on hidden dim
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (--embedding_sharding_dim=0). '
'To shard it along hidden dimension, set --embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when --embedding_sharding_dim=0'
)
args = parser.parse_args()
logger.set_level(args.log_level)
if args.model_dir is not None:
global hf_gpt
if not args.use_weight_only_groupwise_quant_matmul_plugin:
logger.info(f'Loading HF GPT-NeoX model from {args.model_dir}...')
hf_gpt = AutoModelForCausalLM.from_pretrained(args.model_dir)
args.n_embd = hf_gpt.config.hidden_size
args.n_head = hf_gpt.config.num_attention_heads
args.n_layer = hf_gpt.config.num_hidden_layers
args.n_positions = hf_gpt.config.max_position_embeddings
args.vocab_size = hf_gpt.config.vocab_size
args.rotary_pct = hf_gpt.config.rotary_pct
else:
assert (
args.groupwise_quant_safetensors_path is not None
), f'Please set the path to the groupwise quantized GPT-NeoX checkpoints with --groupwise_quant_safetensors_path'
logger.info(
f'Loading GPTQ quantized HF GPT-NeoX model from {args.groupwise_quant_safetensors_path}...'
)
hf_gpt = GPTQModel(args.model_dir,
args.groupwise_quant_safetensors_path)
args.n_embd = hf_gpt.config.hidden_size
args.n_head = hf_gpt.config.num_attention_heads
args.n_layer = hf_gpt.config.num_hidden_layers
args.n_positions = hf_gpt.config.max_position_embeddings
args.vocab_size = hf_gpt.config.vocab_size
args.rotary_pct = hf_gpt.config.rotary_pct
return args
def build_rank_engine(builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name, rank, args):
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
kv_dtype = trt.float16 if args.dtype == 'float16' else trt.float32
rotary_dim = int((args.n_embd // args.n_head) * args.rotary_pct)
# Initialize Module
tensorrt_llm_gpt = tensorrt_llm.models.GPTNeoXForCausalLM(
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
rotary_dim=rotary_dim,
dtype=kv_dtype,
mapping=Mapping(world_size=args.world_size,
rank=rank,
tp_size=args.world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling,
use_parallel_embedding=args.use_parallel_embedding,
embedding_sharding_dim=args.embedding_sharding_dim)
if args.use_weight_only_quant_matmul_plugin:
tensorrt_llm_gpt = weight_only_quantize(tensorrt_llm_gpt)
if args.use_weight_only_groupwise_quant_matmul_plugin:
tensorrt_llm_gpt = weight_only_groupwise_quantize(
model=tensorrt_llm_gpt,
quant_mode=QuantMode(0),
group_size=128,
zero=True)
if args.model_dir is not None:
assert hf_gpt is not None, f'Could not load weights from hf_gpt model as it is not loaded yet.'
if args.world_size > 1:
assert (
args.n_embd % args.world_size == 0
), f'Embedding size/hidden size must be divisible by world size.'
assert (
args.n_head % args.world_size == 0
), f'Number of attention heads must be divisible by world size.'
load_from_hf_gpt_neox(
tensorrt_llm_gpt, hf_gpt, (args.dtype == 'float16'), rank,
args.world_size, args.use_weight_only_groupwise_quant_matmul_plugin)
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
if args.use_layernorm_plugin:
network.plugin_config.set_layernorm_plugin(
dtype=args.use_layernorm_plugin)
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.use_weight_only_quant_matmul_plugin:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=args.use_weight_only_quant_matmul_plugin)
if args.use_weight_only_groupwise_quant_matmul_plugin:
network.plugin_config.set_weight_only_groupwise_quant_matmul_plugin(
dtype=args.use_weight_only_groupwise_quant_matmul_plugin)
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_gpt.named_parameters())
# Forward
inputs = tensorrt_llm_gpt.prepare_inputs(args.max_batch_size,
args.max_input_len,
args.max_output_len, True,
args.max_beam_width)
tensorrt_llm_gpt(*inputs)
tensorrt_llm.graph_rewriting.optimize(network)
engine = None
# Network -> Engine
engine = builder.build_engine(network, builder_config)
if rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder.save_config(builder_config, config_path)
return engine
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
tensorrt_llm.logger.set_level(args.log_level)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# when doing serializing build, all ranks share one engine
apply_query_key_layer_scaling = False
builder = Builder()
cache = None
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
builder_config = builder.create_builder_config(
name=MODEL_NAME,
precision=args.dtype,
timing_cache=args.timing_cache if cache is None else cache,
tensor_parallel=args.world_size, # TP only
parallel_build=args.parallel_build,
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
apply_query_key_layer_scaling=apply_query_key_layer_scaling,
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len)
engine_name = get_engine_name(MODEL_NAME, args.dtype, args.world_size,
cur_rank)
engine = build_rank_engine(builder, builder_config, engine_name,
cur_rank, args)
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
if cur_rank == 0:
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
cache = builder_config.trt_builder_config.get_timing_cache()
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
if rank == 0:
ok = builder.save_timing_cache(
builder_config, os.path.join(args.output_dir, "model.cache"))
assert ok, "Failed to save timing cache."
if __name__ == '__main__':
args = parse_arguments()
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
)
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all {args.world_size} engines: {t}')