TensorRT-LLMs/examples/opt/weight.py
2023-10-15 21:26:20 +08:00

253 lines
11 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import configparser
import time
from pathlib import Path
import numpy as np
import torch
import tensorrt_llm
from tensorrt_llm._utils import pad_vocab_size
from tensorrt_llm.models import OPTLMHeadModel
from tensorrt_llm.quantization import QuantMode
def extract_layer_idx(name):
ss = name.split('.')
for s in ss:
if s.isdigit():
return s
return None
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return np.ascontiguousarray(np.split(v, tp_size)[idx])
elif len(v.shape) == 2:
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx])
return None
def parse_ft_config(ini_file):
gpt_config = configparser.ConfigParser()
gpt_config.read(ini_file)
n_embd = gpt_config.getint('gpt', 'n_embd')
n_head = gpt_config.getint('gpt', 'n_head')
n_layer = gpt_config.getint('gpt', 'n_layer')
n_positions = gpt_config.getint('gpt', 'n_positions')
vocab_size = gpt_config.getint('gpt', 'vocab_size')
do_layer_norm_before = gpt_config.getboolean('gpt',
'do_layer_norm_before',
fallback=True)
return n_embd, n_head, n_layer, n_positions, vocab_size, do_layer_norm_before
def check_embedding_share(dir_path):
share_embedding_table = False
lm_file = dir_path + '/' + 'model.lm_head.weight.bin'
if not Path(lm_file).exists():
share_embedding_table = True
return share_embedding_table
def load_from_ft(tensorrt_llm_gpt: OPTLMHeadModel,
dir_path,
rank=0,
tensor_parallel=1,
fp16=False,
use_parallel_embedding=False,
sharding_dim=0,
share_embedding_table=False):
tensorrt_llm.logger.info('Loading weights from FT...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_gpt, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
tensorrt_llm.logger.info(
'Quantizing weights from FT into INT8 weight-only format...')
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
tensorrt_llm.logger.info(
'Quantizing weights from FT into INT4 weight-only format...')
plugin_weight_only_quant_type = torch.quint4x2
use_weight_only = quant_mode.is_weight_only()
n_embd, n_head, n_layer, n_positions, vocab_size, do_layer_norm_before = parse_ft_config(
Path(dir_path) / 'config.ini')
np_dtype = np.float16 if fp16 else np.float32
def fromfile(dir_path, name, shape=None):
p = dir_path + '/' + name
if Path(p).exists():
t = np.fromfile(p, dtype=np_dtype)
if shape is not None:
t = t.reshape(shape)
return t
return None
pe = fromfile(dir_path, 'model.wpe.bin', [n_positions, n_embd])
if pe is not None:
tensorrt_llm_gpt.embedding.position_embedding.weight.value = (pe)
# For tensor parallism for vocab_embedding.weight
vocab_embedding_weight = fromfile(dir_path, 'model.wte.bin',
[vocab_size, n_embd])
if not use_parallel_embedding:
tensorrt_llm_gpt.embedding.vocab_embedding.weight.value = vocab_embedding_weight
else:
if sharding_dim == 0:
if vocab_size % tensor_parallel != 0:
# padding
vocab_size_padded = pad_vocab_size(
tensorrt_llm_gpt.embedding.vocab_embedding.num_embeddings,
tensor_parallel)
pad_width = vocab_size_padded - vocab_size
vocab_embedding_weight = np.pad(vocab_embedding_weight,
((0, pad_width), (0, 0)),
'constant',
constant_values=0)
tensorrt_llm_gpt.embedding.vocab_embedding.weight.value = np.ascontiguousarray(
split(vocab_embedding_weight,
tensor_parallel,
rank,
dim=sharding_dim))
if do_layer_norm_before:
tensorrt_llm_gpt.ln_f.bias.value = (fromfile(
dir_path, 'model.final_layernorm.bias.bin'))
tensorrt_llm_gpt.ln_f.weight.value = (fromfile(
dir_path, 'model.final_layernorm.weight.bin'))
# share input embedding
if not share_embedding_table:
lm_head_weight = fromfile(dir_path, 'model.lm_head.weight.bin',
[vocab_size, n_embd])
if lm_head_weight is None:
lm_head_weight = fromfile(dir_path, 'model.wte.bin',
[vocab_size, n_embd])
if vocab_size % tensor_parallel != 0:
# padding
vocab_size_padded = tensorrt_llm_gpt.lm_head.out_features * tensor_parallel
pad_width = vocab_size_padded - vocab_size
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
'constant',
constant_values=0)
tensorrt_llm_gpt.lm_head.weight.value = np.ascontiguousarray(
split(lm_head_weight, tensor_parallel, rank))
for i in range(n_layer):
tensorrt_llm_gpt.layers[i].input_layernorm.weight.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.weight.bin'))
tensorrt_llm_gpt.layers[i].input_layernorm.bias.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.bias.bin'))
dst = tensorrt_llm_gpt.layers[i].attention.qkv.weight
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.weight.' + str(rank) + '.bin',
[n_embd, 3 * n_embd // tensor_parallel])
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_gpt.layers[i].attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dst = tensorrt_llm_gpt.layers[i].attention.qkv.bias
dst.value = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.bias.' + str(rank) + '.bin')
dst = tensorrt_llm_gpt.layers[i].attention.dense.weight
t = fromfile(
dir_path, 'model.layers.' + str(i) + '.attention.dense.weight.' +
str(rank) + '.bin', [n_embd // tensor_parallel, n_embd])
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_gpt.layers[
i].attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dst = tensorrt_llm_gpt.layers[i].attention.dense.bias
dst.value = fromfile(
dir_path, 'model.layers.' + str(i) + '.attention.dense.bias.bin')
dst = tensorrt_llm_gpt.layers[i].post_layernorm.weight
dst.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.post_attention_layernorm.weight.bin')
dst = tensorrt_llm_gpt.layers[i].post_layernorm.bias
dst.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.post_attention_layernorm.bias.bin')
dst = tensorrt_llm_gpt.layers[i].mlp.fc.weight
t = fromfile(
dir_path, 'model.layers.' + str(i) + '.mlp.dense_h_to_4h.weight.' +
str(rank) + '.bin', [n_embd, 4 * n_embd // tensor_parallel])
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_gpt.layers[i].mlp.fc.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dst = tensorrt_llm_gpt.layers[i].mlp.fc.bias
dst.value = fromfile(
dir_path, 'model.layers.' + str(i) + '.mlp.dense_h_to_4h.bias.' +
str(rank) + '.bin')
dst = tensorrt_llm_gpt.layers[i].mlp.proj.weight
t = fromfile(
dir_path, 'model.layers.' + str(i) + '.mlp.dense_4h_to_h.weight.' +
str(rank) + '.bin', [4 * n_embd // tensor_parallel, n_embd])
if use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_gpt.layers[i].mlp.proj.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = (np.ascontiguousarray(np.transpose(t, [1, 0])))
dst = tensorrt_llm_gpt.layers[i].mlp.proj.bias
dst.value = fromfile(
dir_path, 'model.layers.' + str(i) + '.mlp.dense_4h_to_h.bias.bin')
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')