mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
377 lines
13 KiB
Plaintext
377 lines
13 KiB
Plaintext
/*
|
|
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/cudaTypeUtils.cuh"
|
|
#include "tensorrt_llm/common/envUtils.h"
|
|
#include "tensorrt_llm/kernels/archCondition.h"
|
|
#include "tensorrt_llm/kernels/renormMoeRoutingKernels.h"
|
|
#include <climits> // For INT_MAX
|
|
#include <cooperative_groups.h>
|
|
#include <cooperative_groups/reduce.h>
|
|
#include <cub/cub.cuh>
|
|
#include <cuda/std/limits> // For numeric_limits
|
|
#include <math.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
using namespace tensorrt_llm::common;
|
|
|
|
namespace tensorrt_llm::kernels
|
|
{
|
|
|
|
static constexpr int BLOCK_SIZE = 1024;
|
|
static constexpr int WARP_SIZE = 32;
|
|
static constexpr int WARPS_PER_BLOCK = BLOCK_SIZE / WARP_SIZE;
|
|
|
|
namespace reduce_topk
|
|
{
|
|
|
|
static constexpr bool TLLM_GEN_HAS_FAST_REDUX = tensorrt_llm::kernels::arch::is_major_v<10>;
|
|
|
|
template <typename T_>
|
|
struct TopKRedType
|
|
{
|
|
using T = T_;
|
|
static_assert(std::is_same_v<T, float> || std::is_same_v<T, half> || std::is_same_v<T, __nv_bfloat16>,
|
|
"Top K reduction only implemented for float, float16 and bfloat16");
|
|
|
|
using TypeCmp = std::conditional_t<sizeof(T) == 4, uint64_t, uint32_t>;
|
|
using IdxT = std::conditional_t<sizeof(T) == 4, int32_t, int16_t>;
|
|
static constexpr int moveBits = (sizeof(T) == 4) ? 32 : 16;
|
|
static constexpr int maxIdx = 65535;
|
|
TypeCmp compValIdx;
|
|
|
|
static __host__ __device__ inline TypeCmp makeCmpVal(T val, int32_t idx = 0)
|
|
{
|
|
auto valueBits = cub::Traits<T>::TwiddleIn(reinterpret_cast<typename cub::Traits<T>::UnsignedBits&>(val));
|
|
TypeCmp compactTmp = reinterpret_cast<TypeCmp&>(valueBits);
|
|
compactTmp = (compactTmp << moveBits) | (0xFFFF & (maxIdx - idx));
|
|
// Use 65535 minus idx to give higher priority to elements with smaller indices.
|
|
return compactTmp;
|
|
}
|
|
|
|
static __host__ __device__ void unpack(T& value, int32_t& index, TypeCmp cmp)
|
|
{
|
|
// Since “65535-idx” is always smaller than 65536 and positive, we can directly use it as the lower 16 bits
|
|
index = maxIdx - static_cast<int32_t>((cmp & 0xFFFF));
|
|
|
|
auto compactTmp = cmp >> moveBits;
|
|
auto valueBits
|
|
= cub::Traits<T>::TwiddleOut(reinterpret_cast<typename cub::Traits<T>::UnsignedBits&>(compactTmp));
|
|
value = reinterpret_cast<T&>(valueBits);
|
|
}
|
|
|
|
__host__ __device__ TopKRedType() = default;
|
|
|
|
__host__ __device__ TopKRedType(T val, int32_t idx)
|
|
: compValIdx(makeCmpVal(val, idx))
|
|
{
|
|
}
|
|
|
|
__host__ __device__ operator TypeCmp() const noexcept
|
|
{
|
|
return compValIdx;
|
|
}
|
|
|
|
__device__ inline TypeCmp reduce(cg::thread_block_tile<WARP_SIZE> const& warp)
|
|
{
|
|
if constexpr (!TLLM_GEN_HAS_FAST_REDUX || sizeof(TypeCmp) == 8)
|
|
{
|
|
return cg::reduce(warp, compValIdx, cg::greater<TypeCmp>{});
|
|
}
|
|
else
|
|
{
|
|
TypeCmp result;
|
|
asm("redux.sync.max.u32 %0, %1, 0xffffffff;\n" : "=r"(result) : "r"(compValIdx));
|
|
return result;
|
|
}
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <int K_, bool Enable_>
|
|
struct TopKIdx
|
|
{
|
|
// by default, empty
|
|
};
|
|
|
|
template <int K_>
|
|
struct TopKIdx<K_, true>
|
|
{
|
|
static constexpr int K = K_;
|
|
int32_t val[K];
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#define TOPK_SWAP(I, J) \
|
|
{ \
|
|
auto pairMin = min(topK[I].compValIdx, topK[J].compValIdx); \
|
|
auto pairMax = max(topK[I].compValIdx, topK[J].compValIdx); \
|
|
topK[I].compValIdx = pairMax; \
|
|
topK[J].compValIdx = pairMin; \
|
|
}
|
|
|
|
template <int N, typename RedType>
|
|
struct Sort;
|
|
|
|
template <typename RedType>
|
|
struct Sort<1, RedType>
|
|
{
|
|
static __device__ void run(RedType* topK) {}
|
|
};
|
|
|
|
template <typename RedType>
|
|
struct Sort<2, RedType>
|
|
{
|
|
static __device__ void run(RedType* topK)
|
|
{
|
|
TOPK_SWAP(0, 1);
|
|
}
|
|
};
|
|
|
|
template <typename RedType>
|
|
struct Sort<3, RedType>
|
|
{
|
|
static __device__ void run(RedType* topK)
|
|
{
|
|
TOPK_SWAP(0, 1);
|
|
TOPK_SWAP(1, 2);
|
|
TOPK_SWAP(0, 1);
|
|
}
|
|
};
|
|
|
|
template <typename RedType>
|
|
struct Sort<4, RedType>
|
|
{
|
|
static __device__ void run(RedType* topK)
|
|
{
|
|
TOPK_SWAP(0, 2);
|
|
TOPK_SWAP(1, 3);
|
|
TOPK_SWAP(0, 1);
|
|
TOPK_SWAP(2, 3);
|
|
TOPK_SWAP(1, 2);
|
|
}
|
|
};
|
|
|
|
template <int K, typename Type, int N, bool IsSorted = false>
|
|
__device__ void reduceTopK(cg::thread_block_tile<WARP_SIZE> const& warp, Type (&out)[K], int32_t (&outIdx)[K],
|
|
Type (&value)[N], int32_t (&idx)[N], Type minValue)
|
|
{
|
|
static_assert(K > 0, "Top K must have K > 0");
|
|
static_assert(K < WARP_SIZE, "Top K must have K < WARP_SIZE");
|
|
static_assert(N > 0, "Top K must have N > 0");
|
|
static_assert(N < 5, "Only support candidates number less than or equal to 128");
|
|
using RedType = TopKRedType<Type>;
|
|
RedType topK[N];
|
|
#pragma unroll
|
|
for (int nn = 0; nn < N; ++nn)
|
|
{
|
|
topK[nn] = RedType{value[nn], idx[nn]};
|
|
}
|
|
|
|
if constexpr (!IsSorted)
|
|
{
|
|
Sort<N, RedType>::run(topK);
|
|
}
|
|
typename RedType::TypeCmp packedMax{};
|
|
#pragma unroll
|
|
for (int kk = 0; kk < K; ++kk)
|
|
{
|
|
bool update = kk > 0 && packedMax == topK[0].compValIdx;
|
|
#pragma unroll
|
|
for (int nn = 0; nn < N; ++nn)
|
|
{
|
|
topK[nn] = update && nn == N - 1 ? RedType{minValue, idx[nn]} : update ? topK[nn + 1] : topK[nn];
|
|
}
|
|
// get the next largest value
|
|
packedMax = topK[0].reduce(warp);
|
|
RedType::unpack(out[kk], outIdx[kk], packedMax);
|
|
}
|
|
};
|
|
|
|
#undef TOPK_SWAP
|
|
|
|
} // end of namespace reduce_topk
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
__device__ T calcSoftmax(cg::thread_block_tile<WARP_SIZE> const& warp, T score, int32_t laneIdx, int32_t NumTopExperts)
|
|
{
|
|
T maxScore = T{-INFINITY};
|
|
if (laneIdx < NumTopExperts)
|
|
{
|
|
maxScore = score >= maxScore ? score : maxScore;
|
|
}
|
|
maxScore = cg::reduce(warp, maxScore, cg::greater<T>());
|
|
|
|
float sumScore = float{0.f};
|
|
float newScore;
|
|
// Get the summation of scores for each token
|
|
if (laneIdx < NumTopExperts)
|
|
{
|
|
newScore = static_cast<float>(score) - static_cast<float>(maxScore);
|
|
newScore = static_cast<float>(exp(newScore));
|
|
sumScore += newScore;
|
|
}
|
|
sumScore = cg::reduce(warp, sumScore, cg::plus<float>());
|
|
|
|
if (laneIdx < NumTopExperts)
|
|
{
|
|
score = static_cast<T>(newScore / sumScore);
|
|
}
|
|
|
|
return score;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename InputT, typename OutputT, typename IdxT, int MaxNumExperts, int MaxNumTopExperts>
|
|
__global__ void renormMoeRoutingKernel(InputT* routerLogits, OutputT* topkValues, IdxT* topkIndices,
|
|
int32_t const numTokens, int32_t const numExperts, int32_t const topK)
|
|
{
|
|
|
|
uint32_t const blockRank = blockIdx.x;
|
|
uint32_t const tIdx = BLOCK_SIZE * blockRank + threadIdx.x;
|
|
uint32_t const warpIdx = tIdx / WARP_SIZE;
|
|
uint32_t const laneIdx = tIdx % WARP_SIZE;
|
|
uint32_t const warpNum = gridDim.x * WARPS_PER_BLOCK;
|
|
auto block = cg::this_thread_block();
|
|
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
|
|
|
InputT minScore = InputT{-INFINITY};
|
|
for (uint32_t tokenId = warpIdx; tokenId < numTokens; tokenId += warpNum)
|
|
{
|
|
auto scoreOffset = tokenId * numExperts;
|
|
auto outputOffset = tokenId * topK;
|
|
InputT inputScore[MaxNumExperts / WARP_SIZE];
|
|
IdxT inputIndex[MaxNumExperts / WARP_SIZE];
|
|
|
|
InputT warpTopKScore[MaxNumTopExperts];
|
|
IdxT warpTopKExpertIdx[MaxNumTopExperts];
|
|
|
|
// Load scores and indices for this warp
|
|
for (uint32_t i = 0; i < MaxNumExperts / WARP_SIZE; ++i)
|
|
{
|
|
auto expertIdx = i * WARP_SIZE + laneIdx;
|
|
inputScore[i]
|
|
= expertIdx < numExperts ? static_cast<InputT>(routerLogits[scoreOffset + expertIdx]) : minScore;
|
|
inputIndex[i] = expertIdx;
|
|
}
|
|
|
|
// Reduce topK scores and indices for this warp
|
|
reduce_topk::reduceTopK(warp, warpTopKScore, warpTopKExpertIdx, inputScore, inputIndex, minScore);
|
|
|
|
// Perform softmax on topK scores
|
|
auto score = calcSoftmax(warp,
|
|
laneIdx < topK ? static_cast<float>(warpTopKScore[laneIdx]) : static_cast<float>(minScore), laneIdx, topK);
|
|
if (laneIdx < topK)
|
|
{
|
|
topkValues[outputOffset + laneIdx] = static_cast<OutputT>(score);
|
|
topkIndices[outputOffset + laneIdx] = warpTopKExpertIdx[laneIdx];
|
|
}
|
|
} // end for tokenId
|
|
}
|
|
|
|
int nextPowerOfTwo(int num)
|
|
{
|
|
if (num <= 0)
|
|
{
|
|
return 1; // Handle invalid input
|
|
}
|
|
int power = 1;
|
|
while (power < num)
|
|
{
|
|
// Check for overflow before shifting
|
|
if (power > INT_MAX / 2)
|
|
{
|
|
return power;
|
|
}
|
|
power <<= 1;
|
|
}
|
|
return power;
|
|
}
|
|
|
|
#define CASE(MAX_NUM_EXPERTS) \
|
|
case MAX_NUM_EXPERTS: \
|
|
switch (maxNumTopExperts) \
|
|
{ \
|
|
case 1: kernelInstance = &renormMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 1>; break; \
|
|
case 2: kernelInstance = &renormMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 2>; break; \
|
|
case 4: kernelInstance = &renormMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 4>; break; \
|
|
case 8: kernelInstance = &renormMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 8>; break; \
|
|
default: kernelInstance = nullptr; break; \
|
|
} \
|
|
break;
|
|
|
|
template <typename InputT, typename OutputT, typename IdxT>
|
|
void invokeRenormMoeRouting(InputT* routerLogits, OutputT* topkValues, IdxT* topkIndices, int64_t const numTokens,
|
|
int64_t const numExperts, int64_t const topK, cudaStream_t const stream)
|
|
{
|
|
|
|
const uint32_t maxNumBlocks = 1024;
|
|
const uint32_t numBlocks = std::min(static_cast<uint32_t>((numTokens - 1) / WARPS_PER_BLOCK + 1), maxNumBlocks);
|
|
|
|
uint32_t maxNumExperts = nextPowerOfTwo(numExperts) < 32 ? 32 : nextPowerOfTwo(numExperts);
|
|
uint32_t maxNumTopExperts = nextPowerOfTwo(topK);
|
|
|
|
auto* kernelInstance = &renormMoeRoutingKernel<InputT, OutputT, IdxT, 128, 8>;
|
|
|
|
switch (maxNumExperts)
|
|
{
|
|
CASE(32)
|
|
CASE(64)
|
|
CASE(96)
|
|
CASE(128)
|
|
default: kernelInstance = nullptr; break;
|
|
}
|
|
|
|
if (kernelInstance == nullptr)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(kernelInstance != nullptr, "Can not find corresponding kernel instance.");
|
|
}
|
|
|
|
dim3 renormMoeRoutingGridDim(numBlocks);
|
|
dim3 renormMoeRoutingBlockDim(BLOCK_SIZE);
|
|
cudaLaunchConfig_t config;
|
|
config.gridDim = renormMoeRoutingGridDim;
|
|
config.blockDim = renormMoeRoutingBlockDim;
|
|
config.dynamicSmemBytes = 0;
|
|
config.stream = stream;
|
|
cudaLaunchAttribute attrs[1];
|
|
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
|
|
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL();
|
|
config.numAttrs = 1;
|
|
config.attrs = attrs;
|
|
cudaLaunchKernelEx(&config, kernelInstance, routerLogits, topkValues, topkIndices, static_cast<int32_t>(numTokens),
|
|
static_cast<int32_t>(numExperts), static_cast<int32_t>(topK));
|
|
sync_check_cuda_error(stream);
|
|
}
|
|
|
|
#define INSTANTIATE_RENORM_MOE_ROUTING(InputT, OutputT, IdxT) \
|
|
template void invokeRenormMoeRouting<InputT, OutputT, IdxT>(InputT * routerLogits, OutputT * topkValues, \
|
|
IdxT * topkIndices, int64_t const numTokens, int64_t const numExperts, int64_t const topK, \
|
|
cudaStream_t const stream);
|
|
|
|
INSTANTIATE_RENORM_MOE_ROUTING(float, float, int32_t);
|
|
INSTANTIATE_RENORM_MOE_ROUTING(half, float, int32_t);
|
|
#ifdef ENABLE_BF16
|
|
INSTANTIATE_RENORM_MOE_ROUTING(__nv_bfloat16, float, int32_t);
|
|
#endif
|
|
|
|
} // namespace tensorrt_llm::kernels
|