mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Support two model flow with no overlap scheduler or chain drafter. Drafting model is in PyTorch backend. Signed-off-by: Govind Ramnarayan <105831528+govind-ramnarayan@users.noreply.github.com>
279 lines
9.7 KiB
Python
279 lines
9.7 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
import pytest
|
|
from build_and_run_ad import ExperimentConfig, main
|
|
from defs.conftest import llm_models_root
|
|
|
|
from tensorrt_llm import SamplingParams
|
|
from tensorrt_llm._torch.auto_deploy.llm import LLM
|
|
from tensorrt_llm.llmapi import DraftTargetDecodingConfig, EagleDecodingConfig, KvCacheConfig
|
|
|
|
prompts = [
|
|
"What is the capital of France?",
|
|
"Please explain the concept of gravity in simple words and a single sentence.",
|
|
]
|
|
|
|
EAGLE_MODEL_SUBPATH = "EAGLE3-LLaMA3.1-Instruct-8B"
|
|
LLAMA_BASE_SUBPATH = "llama-3.1-model/Llama-3.1-8B-Instruct"
|
|
DRAFT_TARGET_MAX_DRAFT_LEN = 3
|
|
EAGLE_MAX_DRAFT_LEN = 3
|
|
|
|
|
|
def get_model_paths():
|
|
"""Get model paths using llm_models_root()."""
|
|
models_root = llm_models_root()
|
|
base_model = os.path.join(models_root, LLAMA_BASE_SUBPATH)
|
|
draft_target_model = os.path.join(
|
|
models_root,
|
|
"llama-models-v2/TinyLlama-1.1B-Chat-v1.0",
|
|
)
|
|
eagle_model = os.path.join(models_root, EAGLE_MODEL_SUBPATH)
|
|
|
|
print(f"Base model path: {base_model}")
|
|
print(f"DraftTarget draft model path: {draft_target_model}")
|
|
print(f"EAGLE model path: {eagle_model}")
|
|
return base_model, draft_target_model, eagle_model
|
|
|
|
|
|
def make_draft_target_config(spec_model_path: str):
|
|
return DraftTargetDecodingConfig(
|
|
max_draft_len=DRAFT_TARGET_MAX_DRAFT_LEN, speculative_model_dir=spec_model_path
|
|
)
|
|
|
|
|
|
def make_eagle3_config(spec_model_path: str):
|
|
return EagleDecodingConfig(
|
|
max_draft_len=EAGLE_MAX_DRAFT_LEN,
|
|
speculative_model_dir=spec_model_path,
|
|
eagle3_one_model=False,
|
|
eagle3_layers_to_capture=None,
|
|
)
|
|
|
|
|
|
def run_with_autodeploy(model, speculative_config, batch_size):
|
|
"""Run AutoDeploy with or without speculative decoding.
|
|
|
|
Args:
|
|
model: Path to the base model
|
|
speculative_config: Speculative decoding config (None for baseline mode)
|
|
batch_size: Number of prompts to process
|
|
|
|
Returns:
|
|
List of (prompt, output) tuples from prompts_and_outputs
|
|
"""
|
|
# Select prompts based on batch size
|
|
selected_prompts = prompts[:batch_size]
|
|
|
|
spec_config = speculative_config
|
|
|
|
# Configure KV cache
|
|
kv_cache_config = KvCacheConfig(
|
|
free_gpu_memory_fraction=0.01,
|
|
)
|
|
|
|
# Configure AutoDeploy LLM arguments
|
|
llm_args = {
|
|
"model": model,
|
|
"skip_loading_weights": False,
|
|
"speculative_config": spec_config,
|
|
"runtime": "trtllm",
|
|
"world_size": 1,
|
|
"kv_cache_config": kv_cache_config,
|
|
"disable_overlap_scheduler": True,
|
|
"max_num_tokens": 64,
|
|
}
|
|
|
|
# Configure experiment with prompts
|
|
experiment_config = {
|
|
"args": llm_args,
|
|
"benchmark": {"enabled": False},
|
|
"prompt": {
|
|
"batch_size": batch_size,
|
|
"queries": selected_prompts,
|
|
},
|
|
}
|
|
|
|
# Create ExperimentConfig
|
|
cfg = ExperimentConfig(**experiment_config)
|
|
|
|
# Add sampling parameters (deterministic with temperature=0.0 and fixed seed)
|
|
cfg.prompt.sp_kwargs = {
|
|
"max_tokens": 50,
|
|
"top_k": None,
|
|
"temperature": 0.0,
|
|
"seed": 42,
|
|
}
|
|
|
|
# Run the experiment
|
|
result = main(cfg)
|
|
|
|
# Extract and return prompts_and_outputs
|
|
assert "prompts_and_outputs" in result, "Result should contain 'prompts_and_outputs'"
|
|
return result["prompts_and_outputs"]
|
|
|
|
|
|
# Note: This test tests exact equality of outputs between speculative and baseline modes.
|
|
# This can fail for larger batch sizes due to nondeterminism with in flight batching.
|
|
# TODO: Figure out a robust test for output correctness that can pass for larger batch sizes.
|
|
@pytest.mark.parametrize("spec_dec_mode", ["draft_target", "eagle3"])
|
|
def test_autodeploy_spec_dec_output(spec_dec_mode):
|
|
"""Test AutoDeploy speculative decoding output correctness.
|
|
|
|
Runs with and without speculative decoding and verifies outputs are identical.
|
|
"""
|
|
print("\n" + "=" * 80)
|
|
print(f"Testing AutoDeploy Speculative Decoding ({spec_dec_mode}) - Output Correctness")
|
|
print("=" * 80)
|
|
|
|
base_model, draft_target_model, eagle_model = get_model_paths()
|
|
|
|
# Select model and config based on mode
|
|
if spec_dec_mode == "draft_target":
|
|
spec_model = draft_target_model
|
|
spec_config = make_draft_target_config(spec_model)
|
|
elif spec_dec_mode == "eagle3": # eagle3
|
|
spec_model = eagle_model
|
|
spec_config = make_eagle3_config(spec_model)
|
|
else:
|
|
raise ValueError(f"Unsupported speculative decoding mode: {spec_dec_mode}")
|
|
|
|
print(f"\nBase Model: {base_model}")
|
|
print(f"Speculative Model ({spec_dec_mode}): {spec_model}")
|
|
|
|
# Run with speculative decoding
|
|
print("\n[1/2] Running with speculative decoding enabled...")
|
|
spec_outputs = run_with_autodeploy(
|
|
model=base_model,
|
|
speculative_config=spec_config,
|
|
batch_size=1,
|
|
)
|
|
print(f"Generated {len(spec_outputs)} outputs with speculative decoding")
|
|
|
|
# Run without speculative decoding (baseline)
|
|
print("\n[2/2] Running without speculative decoding (baseline)...")
|
|
baseline_outputs = run_with_autodeploy(model=base_model, speculative_config=None, batch_size=1)
|
|
print(f"Generated {len(baseline_outputs)} outputs in baseline mode")
|
|
|
|
# Verify outputs are identical
|
|
print("\nVerifying outputs are identical...")
|
|
assert len(spec_outputs) == len(baseline_outputs), (
|
|
f"Number of outputs mismatch: spec={len(spec_outputs)}, baseline={len(baseline_outputs)}"
|
|
)
|
|
|
|
for i, ((spec_prompt, spec_output), (baseline_prompt, baseline_output)) in enumerate(
|
|
zip(spec_outputs, baseline_outputs, strict=True)
|
|
):
|
|
print(f"\n[Output {i}]")
|
|
print(f" Prompt: {spec_prompt}")
|
|
print("================================================")
|
|
print(f" Spec Output: {spec_output}")
|
|
print("================================================")
|
|
print(f" Baseline Output: {baseline_output}")
|
|
print("================================================")
|
|
|
|
assert spec_prompt == baseline_prompt, f"Prompts differ at index {i}"
|
|
assert spec_output == baseline_output, (
|
|
f"Outputs differ at index {i}:\n\n Spec: {spec_output}\n\n Baseline: {baseline_output}\n\n"
|
|
)
|
|
|
|
print("\n" + "=" * 80)
|
|
print("SUCCESS! All outputs are identical between spec-dec and baseline modes")
|
|
print("=" * 80)
|
|
|
|
|
|
def test_autodeploy_eagle3_acceptance_rate():
|
|
"""Test Eagle3 acceptance rate with AutoDeploy engine.
|
|
|
|
Runs Eagle3 speculative decoding with streaming and verifies
|
|
that the acceptance rate is above a minimum threshold.
|
|
"""
|
|
print("\n" + "=" * 80)
|
|
print("Testing AutoDeploy Eagle3 Acceptance Rate")
|
|
print("=" * 80)
|
|
|
|
base_model, _, eagle_model = get_model_paths()
|
|
|
|
print(f"\nBase Model: {base_model}")
|
|
print(f"Eagle3 Model: {eagle_model}")
|
|
|
|
max_draft_len = EAGLE_MAX_DRAFT_LEN
|
|
|
|
# Configure Eagle3 speculative decoding
|
|
speculative_config = EagleDecodingConfig(
|
|
max_draft_len=max_draft_len,
|
|
speculative_model_dir=eagle_model,
|
|
eagle3_one_model=False,
|
|
eagle3_layers_to_capture=None,
|
|
)
|
|
|
|
# Configure KV cache
|
|
kv_cache_config = KvCacheConfig(
|
|
free_gpu_memory_fraction=0.01,
|
|
)
|
|
|
|
# Create AutoDeploy LLM with Eagle3 speculative decoding
|
|
# We directly instantiate the LLM class instead of using the main() function
|
|
# so that we can stream the outputs to see acceptance rates without needing to
|
|
# collect them in the executor.
|
|
llm = LLM(
|
|
model=base_model,
|
|
skip_loading_weights=False,
|
|
runtime="trtllm",
|
|
world_size=1,
|
|
kv_cache_config=kv_cache_config,
|
|
speculative_config=speculative_config,
|
|
disable_overlap_scheduler=True,
|
|
max_num_tokens=64,
|
|
)
|
|
|
|
# Tokenize 2 prompts to test multiple sequential requests
|
|
batch_tok_ids = [llm.tokenizer.encode(p) for p in prompts[:2]]
|
|
|
|
sampling_params = SamplingParams(max_tokens=128, temperature=0, seed=42)
|
|
|
|
print("\nRunning Eagle3 speculative decoding with streaming...")
|
|
|
|
# Process each request sequentially and verify acceptance rate
|
|
for i in range(len(batch_tok_ids)):
|
|
num_tokens = 0
|
|
num_drafted = 0
|
|
num_accepted = 0
|
|
|
|
for output in llm.generate_async(batch_tok_ids[i], sampling_params, streaming=True):
|
|
new_tokens = output.outputs[0].token_ids
|
|
num_drafted += max_draft_len
|
|
num_accepted += len(new_tokens) - num_tokens - 1
|
|
num_tokens = len(new_tokens)
|
|
|
|
accept_rate = num_accepted / num_drafted
|
|
|
|
print(f"\nRequest {i + 1} Acceptance Rate Statistics:")
|
|
print(f" Total tokens drafted: {num_drafted}")
|
|
print(f" Total tokens accepted: {num_accepted}")
|
|
print(f" Acceptance rate: {accept_rate:.2%}")
|
|
|
|
# Verify acceptance rate is above minimum threshold (10%)
|
|
min_acceptance_rate = 0.10
|
|
assert accept_rate > min_acceptance_rate, (
|
|
f"Request {i + 1}: Acceptance rate {accept_rate:.2%} is below minimum threshold {min_acceptance_rate:.0%}"
|
|
)
|
|
|
|
print("\n" + "=" * 80)
|
|
print("SUCCESS! All requests passed acceptance rate threshold")
|
|
print("=" * 80)
|