TensorRT-LLMs/cpp/tensorrt_llm/layers/penaltyLayer.cpp
Kaiyu Xie db4edea1e1
Update TensorRT-LLM (#1763)
* Update TensorRT-LLM

---------

Co-authored-by: Kota Tsuyuzaki <bloodeagle40234@gmail.com>
Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>
2024-06-11 16:59:02 +08:00

381 lines
15 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/layers/penaltyLayer.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/penaltyKernels.h"
#include "tensorrt_llm/layers/defaultDecodingParams.h"
#include <algorithm>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm
{
namespace layers
{
template <typename T>
PenaltyLayer<T>::PenaltyLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain,
cudaStream_t stream, std::shared_ptr<IAllocator> allocator)
: BaseLayer(decoderDomain, stream, std::move(allocator))
, mDecodingMode(mode)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
initialize();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
PenaltyLayer<T>::~PenaltyLayer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
freeBuffer();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::initialize()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mLogitsPtrsHost = runtime::BufferManager::pinned(ITensor::makeShape({}), runtime::TRTDataType<T*>::value);
allocateBuffer();
mCyclicStep = 0;
mRuntimeMaxSeqLen = 0;
mConfiguredBeamWidth = -1;
mTemperature.resize(mDecoderDomain.getBatchSize());
mRepetitionPenalty.resize(mDecoderDomain.getBatchSize());
mPresencePenalty.resize(mDecoderDomain.getBatchSize());
mFrequencyPenalty.resize(mDecoderDomain.getBatchSize());
mMinLength.resize(mDecoderDomain.getBatchSize());
if (!mDecodingMode.isAuto())
{
mConfiguredBeamWidth = mDecoderDomain.getBeamWidth();
allocateWorkspace();
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::allocateWorkspace()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (mDecodingMode.isUseOccurrencePenalty())
{
auto const workspaceSize = sizeof(SizeType32) * mDecoderDomain.getBatchSize()
* mDecoderDomain.getMaxDecodingTokens() * mConfiguredBeamWidth * mDecoderDomain.getVocabSize();
mPenaltyWorkspaceDevice = mAllocator->reMalloc(mPenaltyWorkspaceDevice, workspaceSize, false);
if (mDecodingMode.isBeamSearch())
{
mPenaltyWorkspacePrevDevice = mAllocator->reMalloc(mPenaltyWorkspacePrevDevice, workspaceSize, false);
}
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::allocateBuffer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (mDecodingMode.isUseTemperature())
{
mTemperatureDevice
= mAllocator->reMalloc(mTemperatureDevice, sizeof(float) * mDecoderDomain.getBatchSize(), false);
}
if (mDecodingMode.isUseRepetitionPenalty())
{
mRepetitionPenaltyDevice
= mAllocator->reMalloc(mRepetitionPenaltyDevice, sizeof(float) * mDecoderDomain.getBatchSize(), false);
}
if (mDecodingMode.isUsePresencePenalty())
{
mPresencePenaltyDevice
= mAllocator->reMalloc(mPresencePenaltyDevice, sizeof(float) * mDecoderDomain.getBatchSize(), false);
}
if (mDecodingMode.isUseFrequencyPenalty())
{
mFrequencyPenaltyDevice
= mAllocator->reMalloc(mFrequencyPenaltyDevice, sizeof(float) * mDecoderDomain.getBatchSize(), false);
}
if (mDecodingMode.isUseMinLength())
{
mMinLengthDevice
= mAllocator->reMalloc(mMinLengthDevice, sizeof(SizeType32) * mDecoderDomain.getBatchSize(), false);
}
mRuntimeLogitsDevice = mAllocator->reMalloc(mRuntimeLogitsDevice,
sizeof(T) * mDecoderDomain.getBatchSize() * mDecoderDomain.getMaxDecodingTokens()
* mDecoderDomain.getBeamWidth() * mDecoderDomain.getVocabSizePadded(),
false);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::freeBuffer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (mPenaltyWorkspaceDevice != nullptr)
{
mAllocator->free((void**) &mPenaltyWorkspaceDevice);
}
if (mPenaltyWorkspacePrevDevice != nullptr)
{
mAllocator->free((void**) &mPenaltyWorkspacePrevDevice);
}
if (mDecodingMode.isUseTemperature())
{
mAllocator->free((void**) (&mTemperatureDevice));
}
if (mDecodingMode.isUseRepetitionPenalty())
{
mAllocator->free((void**) (&mRepetitionPenaltyDevice));
}
if (mDecodingMode.isUsePresencePenalty())
{
mAllocator->free((void**) (&mPresencePenaltyDevice));
}
if (mDecodingMode.isUseFrequencyPenalty())
{
mAllocator->free((void**) (&mFrequencyPenaltyDevice));
}
if (mDecodingMode.isUseMinLength())
{
mAllocator->free((void**) (&mMinLengthDevice));
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 const* batchSlots,
std::shared_ptr<BaseSetupParams> baseSetupParams)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto setupParams = std::dynamic_pointer_cast<DynamicDecodeSetupParams>(baseSetupParams);
if (mConfiguredBeamWidth == -1)
{
// This code is left only for Python runtime
// In C++ runtime given maxBeamWidth should always be equal to the runtime beamWidth
TLLM_CHECK(mDecodingMode.isAuto());
mConfiguredBeamWidth = beamWidth;
mDecodingMode
= mConfiguredBeamWidth == 1 ? executor::DecodingMode::TopKTopP() : executor::DecodingMode::BeamSearch();
allocateWorkspace();
}
std::vector<SizeType32> batchSlotsVec(batchSize);
std::iota(batchSlotsVec.begin(), batchSlotsVec.end(), 0);
auto batchSlotsHost = batchSlots ? batchSlots : batchSlotsVec.data();
// Setup penalties.
FillBuffers const fillBuffers{batchSize, mDecoderDomain.getBatchSize(), mStream};
auto const& penaltyParams = setupParams->penaltyParams;
bool const useTemperature = mDecodingMode.isUseTemperature() && penaltyParams.temperature.has_value();
bool const useRepetitionPenalty
= mDecodingMode.isUseRepetitionPenalty() && penaltyParams.repetitionPenalty.has_value();
bool const usePresencePenalty = mDecodingMode.isUsePresencePenalty() && penaltyParams.presencePenalty.has_value();
bool const useFrequencyPenalty
= mDecodingMode.isUseFrequencyPenalty() && penaltyParams.frequencyPenalty.has_value();
bool const useMinLength = mDecodingMode.isUseMinLength() && penaltyParams.minLength.has_value();
// FIXME(nkorobov): once one of the requests has some penalty, we will always have to compute it.
// To avoid that we need to scan through all active requests at each iteration.
mUseTemperature |= useTemperature;
mUseRepetitionPenalty |= useRepetitionPenalty;
mUsePresencePenalty |= usePresencePenalty;
mUseFrequencyPenalty |= useFrequencyPenalty;
mUseMinLength |= useMinLength;
if (mUseTemperature)
{
fillBuffers(penaltyParams.temperature, DefaultDecodingParams::getTemperature(), mTemperature,
mTemperatureDevice, batchSlotsHost, getLimitsPenalty(DecodingPenaltyType::Temperature),
"temperature penalty");
}
if (mUseRepetitionPenalty)
{
fillBuffers(penaltyParams.repetitionPenalty, DefaultDecodingParams::getRepetitionPenalty(), mRepetitionPenalty,
mRepetitionPenaltyDevice, batchSlotsHost, getLimitsPenalty(DecodingPenaltyType::Repetition),
"repetition penalty");
}
if (mUsePresencePenalty)
{
fillBuffers(penaltyParams.presencePenalty, DefaultDecodingParams::getPresencePenalty(), mPresencePenalty,
mPresencePenaltyDevice, batchSlotsHost, getLimitsPenalty(DecodingPenaltyType::Presence),
"presence penalty");
}
if (mUseFrequencyPenalty)
{
fillBuffers(penaltyParams.frequencyPenalty, DefaultDecodingParams::getFrequencyPenalty(), mFrequencyPenalty,
mFrequencyPenaltyDevice, batchSlotsHost, getLimitsPenalty(DecodingPenaltyType::Frequency),
"frequency penalty");
}
if (mUseMinLength)
{
fillBuffers(penaltyParams.minLength, DefaultDecodingParams::getMinLength(), mMinLength, mMinLengthDevice,
batchSlotsHost, getLimitsPenalty(DecodingPenaltyType::MinLength), "min length");
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void PenaltyLayer<T>::forwardAsync(
std::shared_ptr<BaseOutputParams> baseOutputs, std::shared_ptr<BaseInputParams> baseInputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto outputs = std::dynamic_pointer_cast<DynamicDecodeOutputParams>(baseOutputs);
auto params = std::dynamic_pointer_cast<DynamicDecodeInputParams>(baseInputs);
auto const localDecoderDomain = getLocalDecoderDomain(params, mDecoderDomain);
auto const maxSeqLen = outputs->output_ids.shape[outputs->output_ids.shape.size() - 1];
auto batchSlots = params->batch_slots ? params->batch_slots->template getPtr<SizeType32 const>() : nullptr;
std::vector<SizeType32> batchSlotsVec(localDecoderDomain.getBatchSize());
std::iota(batchSlotsVec.begin(), batchSlotsVec.end(), 0);
auto batchSlotsHost
= params->batch_slots ? params->batch_slots->template getPtr<SizeType32 const>() : batchSlotsVec.data();
if (!mLogitsPtrsHost->data())
{
mLogitsPtrsHost = runtime::BufferManager::pinnedPool(
ITensor::makeShape({static_cast<int32_t>(maxSeqLen), static_cast<int32_t>(mDecoderDomain.getBatchSize())}),
runtime::TRTDataType<T*>::value);
mRuntimeMaxSeqLen = maxSeqLen;
}
mCyclicStep = mCyclicStep % mRuntimeMaxSeqLen;
auto logitsPtrsHost = ITensor::slice(mLogitsPtrsHost, mCyclicStep, 1);
auto logitsPtrsHostData = reinterpret_cast<T const**>(runtime::bufferCast<int64_t>(*logitsPtrsHost));
for (SizeType32 bi = 0; bi < localDecoderDomain.getBatchSize(); bi++)
{
if (params->logits_vec)
{
TLLM_CHECK_WITH_INFO(params->logits_vec->size() == localDecoderDomain.getBatchSize(),
"Logits vector size (%lu) is not equal to the batchSize (%d)", params->logits_vec->size(),
localDecoderDomain.getBatchSize());
logitsPtrsHostData[bi] = params->logits_vec.value()[bi].template getPtr<T>();
}
else
{
logitsPtrsHostData[bi] = params->logits->template getPtrWithOffset<T>(
bi * localDecoderDomain.getBeamWidth() * mDecoderDomain.getVocabSizePadded());
}
}
SizeType32 const* inputLengths = nullptr;
if (params->input_lengths)
{
auto& input_lengths = params->input_lengths.value();
inputLengths = input_lengths.template getPtr<SizeType32 const>();
}
auto* embeddingBias = params->embedding_bias ? params->embedding_bias->template getPtr<T const>() : nullptr;
#define GET_PENALTIES(capital_name, type) \
(mUse##capital_name \
&& !allOfBatchSlots(batchSlotsHost, m##capital_name.data(), localDecoderDomain.getBatchSize(), \
DefaultDecodingParams::get##capital_name())) \
? m##capital_name##Device \
: nullptr;
auto* temperatures = GET_PENALTIES(Temperature, float);
auto* repetitionPenalties = GET_PENALTIES(RepetitionPenalty, float);
auto* presencePenalties = GET_PENALTIES(PresencePenalty, float);
auto* frequencyPenalties = GET_PENALTIES(FrequencyPenalty, float);
auto* minLengths = GET_PENALTIES(MinLength, SizeType32);
#undef GET_PENALTIES
auto const tokensPerStep = params->medusaInputs
? params->medusaInputs->medusaCurTokensPerStep.template getPtr<SizeType32 const>()
: nullptr;
InvokeBatchApplyPenaltyParams<T> penaltyParams;
penaltyParams.inputLogits = reinterpret_cast<T const* const*>(logitsPtrsHostData);
penaltyParams.outputLogits = mRuntimeLogitsDevice;
penaltyParams.biases = embeddingBias;
penaltyParams.penaltyWorkspace = mPenaltyWorkspaceDevice;
penaltyParams.penaltyWorkspacePrev = mPenaltyWorkspacePrevDevice;
penaltyParams.temperatures = temperatures;
penaltyParams.repetitionPenalties = repetitionPenalties;
penaltyParams.presencePenalties = presencePenalties;
penaltyParams.frequencyPenalties = frequencyPenalties;
penaltyParams.batchSize = localDecoderDomain.getBatchSize();
penaltyParams.beamWidth = localDecoderDomain.getBeamWidth();
penaltyParams.maxSeqLen = maxSeqLen;
penaltyParams.vocabSize = mDecoderDomain.getVocabSize();
penaltyParams.vocabSizePadded = mDecoderDomain.getVocabSizePadded();
penaltyParams.outputIdsPtr = outputs->output_ids_ptr.template getPtr<TokenIdType const*>();
penaltyParams.parentIdsPtr = outputs->parent_ids_ptr.template getPtr<SizeType32 const*>();
penaltyParams.inputLengths = inputLengths;
penaltyParams.sequenceLengths = outputs->sequence_length->template getPtr<SizeType32 const>();
penaltyParams.minLengths = minLengths;
penaltyParams.endIds = params->end_ids.template getPtr<TokenIdType const>();
penaltyParams.batchSlots = batchSlots;
penaltyParams.maxTokensPerStep = mDecoderDomain.getMaxDecodingTokens();
penaltyParams.tokensPerStep = tokensPerStep;
penaltyParams.stream = mStream;
invokeBatchApplyPenalty(penaltyParams);
sync_check_cuda_error();
mCyclicStep += 1;
params->logits = Tensor(MEMORY_GPU, std::is_same_v<T, float> ? DataType::TYPE_FP32 : DataType::TYPE_FP16,
{static_cast<size_t>(localDecoderDomain.getBatchSize()),
static_cast<size_t>(mDecoderDomain.getMaxDecodingTokens()),
static_cast<size_t>(localDecoderDomain.getBeamWidth()),
static_cast<size_t>(mDecoderDomain.getVocabSizePadded())},
mRuntimeLogitsDevice);
if (mDecodingMode.isBeamSearch())
{
std::swap(mPenaltyWorkspaceDevice, mPenaltyWorkspacePrevDevice);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template class PenaltyLayer<float>;
template class PenaltyLayer<half>;
} // namespace layers
} // namespace tensorrt_llm